Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson ; 144(2): 228-42, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10828191

RESUMO

The cross-peak intensity for a S = 1/2, I = 1/2 spin system in two-dimensional HYSCORE spectra of single-crystals and powders is analyzed. There is a fundamental difference between these two cases. For single crystals, the cross-peak intensity is distributed between the two (+, +) and (+, -) quadrants of the hyperfine sublevel correlation (HYSCORE) spectrum by the ratio c(2):s(2) (C. Gemperle, G. Aebli, A. Schweiger, and R. R. Ernst, J. Magn. Reson. 88, 241 (1990)). However, for powder spectra another factor becomes dominant and governs cross-peak intensities in the two quadrants. This factor is the phase interference between modulation from different orientations of the paramagnetic species. This can lead to essentially complete disappearance of the cross-peak in one of the two (+, +) or (+, -) quadrants. In the (+, +) quadrant, cross-peaks oriented parallel to the main (positive) diagonal of the HYSCORE spectrum are suppressed, while the opposite is true in the (+, -) quadrant where cross-peaks nearly perpendicular to the main (negative) diagonal of HYSCORE spectra are suppressed. Analytical expressions are derived for the cross-peak intensity profiles in powder HYSCORE spectra for both axial and nonaxial hyperfine interactions (HFI). The intensity is a product of two terms, one depending only on experimental parameter (tau) and the other only on the spin Hamiltonian. This separation provides a rapid way to choose tau for maximum cross-peak intensity in a region of interest in the spectrum. For axial HFI, the Hamiltonian-dependent term has only one maximum and decreases to zero at the canonical orientations. For nonaxial HFI, this term produces three separate ridges which outline the whole powder lineshape. These three ridges have the majority of the intensity in the HYSCORE spectrum. The intensity profile of each ridge resembles that observed for axial HFI. Each ridge defines two principal values of the HFI similar to the ridges from an axial HFI.


Assuntos
Espectroscopia de Ressonância Magnética , Pós/química , Anisotropia , Magnetismo , Modelos Teóricos , Estrutura Molecular , Marcadores de Spin
2.
J Biol Inorg Chem ; 4(3): 292-301, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10439074

RESUMO

Radiolytic reduction at 77 K of oxo/hydroxo-bridged dinuclear iron(III) complexes in frozen solutions forms kinetically stabilized, mixed-valent species in high yields that model the mixed-valent sites of non-heme, diiron proteins. The mixed-valent species trapped at 77 K retain ligation geometry similar to the initial diferric clusters. The shapes of the mixed-valent EPR signals depend strongly on the bridging ligands. Spectra of the Fe(II)OFe(III) species reveal an S = 1/2 ground state with small g-anisotropy as characterized by the uniaxial component (gz-gav/2 < 0.03) observable at temperatures as high as approximately 100 K. In contrast, hydroxo-bridged mixed-valent species are characterized by large g-anisotropy (gz-gav/2 > 0.03) and are observable only below 30 K. Annealing at higher temperatures causes structural relaxation and changes in the EPR characteristics. EPR spectral properties allow the oxo- and hydroxo-bridged, mixed-valent diiron centers to be distinguished from each other and can help characterize the structure of mixed-valent centers in proteins.


Assuntos
Hemeritrina/química , Ferro/química , Oxigenases/química , Ribonucleotídeo Redutases/química , Anisotropia , Espectroscopia de Ressonância de Spin Eletrônica , Congelamento , Hemeritrina/metabolismo , Hemeritrina/efeitos da radiação , Ferro/metabolismo , Ferro/efeitos da radiação , Oxigenases/metabolismo , Oxigenases/efeitos da radiação , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA