Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 156(14): 144903, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428388

RESUMO

In a neuron network, synapses update individually using local information, allowing for entirely decentralized learning. In contrast, elements in an artificial neural network are typically updated simultaneously using a central processor. Here, we investigate the feasibility and effect of desynchronous learning in a recently introduced decentralized, physics-driven learning network. We show that desynchronizing the learning process does not degrade the performance for a variety of tasks in an idealized simulation. In experiment, desynchronization actually improves the performance by allowing the system to better explore the discretized state space of solutions. We draw an analogy between desynchronization and mini-batching in stochastic gradient descent and show that they have similar effects on the learning process. Desynchronizing the learning process establishes physics-driven learning networks as truly fully distributed learning machines, promoting better performance and scalability in deployment.


Assuntos
Aprendizagem , Redes Neurais de Computação , Simulação por Computador , Aprendizagem/fisiologia , Neurônios , Física
2.
Opt Express ; 27(6): 8112-8120, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052634

RESUMO

Many phenomena of interest in nature and industry occur rapidly and are difficult and cost-prohibitive to visualize properly without specialized cameras. Here we describe in detail the virtual frame technique (VFT), a simple, useful, and accessible mode of imaging that increases the frame acquisition rate of any camera by several orders of magnitude by leveraging its dynamic range. The VFT is a powerful tool for capturing rapid phenomena where the dynamics facilitate a transition between two states, and are thus binary. The advantages of the VFT are demonstrated by examining such dynamics in five physical processes at unprecedented rates and spatial resolution: fracture of an elastic solid, wetting of a solid surface, rapid fingerprint reading, peeling of adhesive tape, and impact of an elastic hemisphere on a hard surface. We show that the performance of the VFT exceeds that of any commercial high-speed camera not only in rate of imaging but also in field of view, achieving a 65MHz frame rate at 4MPx resolution. Finally, we discuss the performance of the VFT with several commercially available conventional and high-speed cameras. In principle, modern cell phones can achieve imaging rates of over a million frames per second using the VFT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA