Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Chemother Pharmacol ; 94(1): 35-44, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441626

RESUMO

BACKGROUND AND AIM: Chronic myeloid leukemia is a myeloproliferative neoplasm associated with the specific chromosomal translocation known as the Philadelphia chromosome. Imatinib is a potent BCR-ABL tyrosine kinase inhibitor, which is approved as the first line therapy for CML patients. There are various population pharmacokinetic studies available in the literature for this population. However, their use in other populations outside of their cohort for the model development has not been evaluated. This study was aimed to perform the predictive performance of the published population pharmacokinetic models for imatinib in CML population and propose a dosing nomogram. METHODS: A systematic review was conducted through PubMed, and WoS databases to identify PopPK models. Clinical data collected in adult CML patients treated with imatinib was used for evaluation of these models. Various prediction-based metrics were used for assessing the bias and precision of PopPK models using individual predictions. RESULTS: Eight imatinib PopPK model were selected for evaluating the model performance. A total of 145 plasma imatinib samples were collected from 43 adult patients diagnosed with CML and treated with imatinib. The PopPK model reported by Menon et al. had better performance than all other PopPK models. CONCLUSION: Menon et al. model was able to predict well for our clinical data where it had the relative mean prediction error percentage ≤ 20%, relative median absolute prediction error ≤ 30% and relative root mean square error close to zero. Based on this final model, we proposed a dosing nomogram for various weight groups, which could potentially help to maintain the trough concentrations in the therapeutic range.


Assuntos
Antineoplásicos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva , Modelos Biológicos , Inibidores de Proteínas Quinases , Humanos , Mesilato de Imatinib/farmacocinética , Mesilato de Imatinib/administração & dosagem , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Nomogramas , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga
2.
Biology (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36671744

RESUMO

BACKGROUND: Tamoxifen is useful in managing breast cancer and it is reported to have significant variability in its pharmacokinetics. This review aimed to summarize reported population pharmacokinetics studies of tamoxifen and to identify the factors affecting the pharmacokinetics of tamoxifen in adult breast cancer patients. METHOD: A systematic search was undertaken in Scopus, Web of Science, and PubMed for papers published in the English language from inception to 20 August 2022. Studies were included in the review if the population pharmacokinetic modeling was based on non-linear mixed-effects modeling with a parametric approach for tamoxifen in breast cancer patients. RESULTS: After initial selection, 671 records were taken for screening. A total of five studies were selected from Scopus, Web of Science, PubMed, and by manual searching. The majority of the studies were two-compartment models with first-order absorption and elimination to describe tamoxifen and its metabolites' disposition. The CYP2D6 phenotype and CYP3A4 genotype were the main covariates that affected the metabolism of tamoxifen and its metabolites. Other factors influencing the drug's pharmacokinetics included age, co-medication, BMI, medication adherence, CYP2B6, and CYP2C19 genotype. CONCLUSION: The disposition of tamoxifen and its metabolites varies primarily due to the CYP2D6 phenotype and CYP3A4 genotype. However, other factors, such as anthropometric characteristics and menopausal status, should also be addressed when accounting for this variability. All these studies should be externally evaluated to assess their applicability in different populations and to use model-informed dosing in the clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA