Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 20: 35, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23731716

RESUMO

Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.


Assuntos
Resinas Acrílicas/química , Glicoesfingolipídeos/química , Vacinas contra Leishmaniose/química , Leishmaniose/prevenção & controle , Animais , Linhagem Celular , Glicoesfingolipídeos/toxicidade , Vacinas contra Leishmaniose/toxicidade , Camundongos , Vacinação , Vacinas Conjugadas/química , Vacinas Conjugadas/toxicidade
2.
Macromol Biosci ; 22(1): e2100375, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34708562

RESUMO

Here, a targeted, dual-pH responsive, and stable micelle nanocarrier is designed, which specifically selects an HER2 receptor on breast cancer cells. Intracellularly degradable and stabilized micelles are prepared by core cross-linking via reversible addition-fragmentation chain-transfer (RAFT) polymerization with an acid-sensitive cross-linker followed by the conjugation of maleimide-doxorubicin to the pyridyl disulfide-modified micelles. Multifunctional nanocarriers are obtained by coupling HER2-specific peptide. Formation of micelles, addition of peptide and doxorubicin (DOX) are confirmed structurally by spectroscopical techniques. Size and morphological characterization are performed by Zetasizer and transmission electron microscope (TEM). For the physicochemical verification of the synergistic acid-triggered degradation induced by acetal and hydrazone bond degradation, Infrared spectroscopy and particle size measurements are used. Drug release studies show that DOX release is accelerated at acidic pH. DOX-conjugated HER2-specific peptide-carrying nanocarriers significantly enhance cytotoxicity toward SKBR-3 cells. More importantly, no selectivity toward MCF-10A cells is observed compared to HER2(+) SKBR-3 cells. Formulations cause apoptosis depending on Bax and Caspase-3 and cell cycle arrest in G2 phase. This study shows a novel system for HER2-targeted therapy of breast cancer with a multifunctional nanocarrier, which has higher stability, dual pH-sensitivity, selectivity, and it can be an efficient way of targeted anticancer drug delivery.


Assuntos
Antineoplásicos , Micelas , Antineoplásicos/farmacologia , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA