Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 321: 115942, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985265

RESUMO

In nature, the hydroxyl radical (•OH) is produced during the anaerobic-aerobic transition when groundwater level fluctuates. In addition, the •OH is also detected in iron-bearing clay minerals and iron oxides during the redox process. Goethite is one of the most stable iron oxides involved in biogeochemical cycles. In this study, the coexisting humic acid (HA) enhanced the generation of Fe(II) during the iron reduction process and accelerated the generation of •OH in the redox process of goethite. The organic contaminants in black and odorous water were decomposed by constructing an iron-reducing bacteria-HA-Fe(II)/Fe(III) reaction system under anaerobic-aerobic alternation. The results demonstrated that in the anaerobic stage, HA could promote the reduction and dissolution of goethite through the complexation effect and electron shuttle mechanism, as well as significantly strengthening the iron reduction process in water. Under aerobic conditions, Fe(II) in the reaction system would activate O2 to generate •O2-. The •OH, formed by Fe (II) and •O2- via Fenton reaction and Haber-Weiss mechanism, oxidized dissolved organic matter (DOM) in water. The characterization of DOM by three-dimensional fluorescence spectroscopy (3DEEM) indicated that after four redox fluctuations, the organic contaminants in water samples were effectively degraded. Generally, this study provides new approaches and insights into the biogeochemical cycling of Fe and C elements and water pollution remediation at the anoxic-anoxic interface.


Assuntos
Compostos Férricos , Substâncias Húmicas , Matéria Orgânica Dissolvida , Compostos Férricos/química , Compostos Ferrosos/química , Ferro/química , Oxirredução , Água
2.
Ecotoxicol Environ Saf ; 203: 110945, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684517

RESUMO

The high-concentration wastewater produced in the industrial reverse osmosis (RO) process contains a large amount of refractory organic matters, which will have serious impacts on the natural environment and human health. Among them, contaminants can be transformed by humus-reducing bacteria based on humus. In this study, O3- assisted UV-Fenton method was applied as pretreatment. Biological activated carbon (BAC) technology in which humus-reducing bacteria were the dominant bacteria, enhanced by electron donor and Fe3+, was used to dispose of RO concentrate (ROC). The results showed that water treatment process combining oxidation with biological filtration had a positive effect on the removal of stubborn contaminants in ROC. The system was strengthened by adding electron donor and Fe3+, and the chemical oxygen demand (COD) removal efficiency was up to 80.1%. However, when the removal efficiency of UV254 absorbing pollutants reached optimal value (87.3%), that means only Fe3+ was added.


Assuntos
Carvão Vegetal/análise , Compostos Férricos/química , Substâncias Húmicas , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Filtração/métodos , Substâncias Húmicas/análise , Substâncias Húmicas/microbiologia , Hidrocarbonetos Halogenados/análise , Peróxido de Hidrogênio/química , Ferro/química , Osmose , Oxirredução , Ozônio/química , Raios Ultravioleta , Águas Residuárias/análise , Águas Residuárias/microbiologia
3.
Sci Total Environ ; 912: 169081, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104829

RESUMO

As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Microplásticos , Áreas Alagadas , Plásticos , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 345: 126571, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34921924

RESUMO

In this study, three bacteria were isolated from activated sludge (Pseudomonas aeruginosa, Bacillus subtilis, and Dietzia maris). After that, isolated strains and Scenedesmus quadricauda that could degrade refractory organics, as co-immobilization species, were prepared gel beads to treat black odorous water. Under the optimized conditions, the removal rate of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP) reached 94.36%, 95.7%, 91.22% and 95.27%, respectively, and organics (including aromatic proteins and microbial-by-product-like compounds) were also significantly removed. Microbial analysis reveals that the community structure had a significant difference before and after treatment, and the main dominant at the genus level was transformed from Nitrospirillum (approximately 18.03%) to Flavobacterium (approximately 17.64%). This study also found that the immobilized gel beads have excellent stability and reusability, which provided a feasible and robust bioremediation strategy for the treatment of actual black-odor water.


Assuntos
Scenedesmus , Esgotos , Nitrogênio , Nutrientes , Odorantes , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
5.
Environ Sci Pollut Res Int ; 29(52): 78542-78554, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35696059

RESUMO

To achieve the sustainable and effective removal efficiency of nutrients in black odorous water, light source, inter-species microalgae mixed culture, and the harvesting effect were all explored. The results showed that under a LED light source, the addition of interspecific soluble algal products (SAP) promoted the growth of Haematococcus pluvialis (H. pluvialis) M1, and its maximum specific growth rate was 1.76 times that of H. pluvialis cultivated alone. That was due to the hormesis effect between the two kinds of microalgae, the SAP produced by Scenedesmus could stimulate the growth of H. pluvialis. The algae and bacteria symbiotic system with black odorous water as the medium showed excellent performance to treat nutrients, where the concentration of ammonia nitrogen (NH3-N) and total phosphorus (TP) (0.84, 0.23 mg/L) met the requirements of landscape water. The microbial diversity analysis revealed that the introduction of microalgae changed the dominant species of the bacterial community from Bacteroidota to Proteobacteria. Furthermore, timely microalgae harvesting could prevent water quality from deteriorating and was conducive to microalgae growth and resource recycling. The higher harvest efficiency (98.1%) of H. pluvialis was obtained when an inoculation size of 20% and 0.16 g/L FeCl3 were provided.


Assuntos
Microalgas , Amônia , Biomassa , Fósforo/análise , Nitrogênio/análise , Bactérias , Nutrientes/análise
6.
Food Chem ; 315: 126299, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32028201

RESUMO

Polyethylene (PE), polypropylene (PP), polyamide (PA), and polyethylene terephthalate (PET) surfaces and particles were employed to study effects of polymer materials on linseed oil, peanut oil, rapeseed oil and sunflower seed oil oxidation. The surface types of the materials, hydroperoxide content and volatile in oils were determined by contact angle, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Oils on PP surfaces underwent a more rapid oxidation, followed by PA, PE and PET. Except PP sets, this order was consistent with surface hydrophilicity of polymers. Further study using polymer particles avoiding packaging barrier suggested this was probably due to barrier factors. Although PE surfaces allowed oil to have lower content of hydroperoxides, it can promote oil hydroperoxide decomposition into volatile products. Surface types of polymer materials are correlated with oxidation of contacted oil, and these surfaces can also affect the oil secondary oxidation and the degradation of oxidation products.


Assuntos
Embalagem de Alimentos , Nylons/química , Óleos de Plantas/química , Polietileno/química , Polipropilenos/química , Verduras/química , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Environ Technol ; 39(17): 2178-2184, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28678635

RESUMO

The primary pollutants in reverse-osmosis concentrates (ROC) are the substances with the UV absorbance at 254 nm (UV254), which is closely related to humic substances that can be degraded by humus-reducing bacteria. This work studied the degradation characteristics of humus-reducing bacteria in ROC treatment. The physiological and biochemical characteristics of humus-reducing bacteria were investigated, and the effects of pH values and electron donors on the reduction of humic analog, antraquinone-2, 6-disulfonate were explored to optimize the degradation. Furthermore, the O3-assisted UV-Fenton method was applied for the pretreatment of ROC, and the degradation of UV254 absorbance was apparently promoted with their removal rate, reaching 84.2% after 10 days of degradation by humus-reducing bacteria.


Assuntos
Bactérias , Osmose , Ozônio , Microbiologia do Solo , Filtração , Substâncias Húmicas , Peróxido de Hidrogênio , Oxirredução , Solo , Raios Ultravioleta , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA