Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Mol Sci ; 17(7)2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27447617

RESUMO

Chemotherapeutic agents have been used as an adjunct to mechanical debridement for peri-implantitis treatment. The present in vitro study evaluated and compared the effectiveness of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), and chlorhexidine (CHX) at eliminating Gram-negative (E. coli and P. gingivalis) and Gram-positive (E. faecalis and S. sanguinis) bacteria. The effect of irrigating volume and exposure time on the antimicrobial efficacy of HOCl was evaluated, and a durability analysis was completed. Live/dead staining, morphology observation, alamarBlue assay, and lipopolysaccharide (LPS) detection were examined on grit-blasted and biofilm-contaminated titanium alloy discs after treatment with the three chemotherapeutic agents. The results indicated that HOCl exhibited better antibacterial efficacy with increasing irrigating volumes. HOCl achieved greater antibacterial efficacy as treatment time was increased. A decrease in antimicrobial effectiveness was observed when HOCl was unsealed and left in contact with the air. All the irrigants showed antibacterial activity and killed the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants. Moreover, HOCl significantly lowered the LPS concentration of P. gingivalis when compared with NaOCl and CHX. Thus, a HOCl antiseptic may be effective for cleaning biofilm-contaminated implant surfaces.


Assuntos
Ligas/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Titânio/química , Bactérias/efeitos dos fármacos , Contagem de Colônia Microbiana , Técnicas In Vitro
2.
J Mater Sci Mater Med ; 25(9): 2193-203, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24970350

RESUMO

The purpose of this study is to evaluate the physicochemical properties and in vitro osteogenic activity of radiopaque calcium silicate-gelatin cements. The radiopacity, setting time, working time, flow, diametral tensile strength, pH value, washout resistance and morphology of the cements with gelatin (0, 5 and 10% by weight) were measured, which compared to a popular endodontic material, ProRoot white-colored mineral trioxide aggregate (WMTA). The cell morphology, cell attachment and proliferation, alkaline phosphatase and osteocalcin levels on the cements were measured by culturing the specimens with dental pulp cells. The results indicated that the presence of gelatin significantly (P < 0.05) reduced radiopacity and diametral tensile strength and prolonged setting time. Nevertheless, the 5 wt% gelatin cement had a radiopacity (5.1 mm of Al thickness) higher than ISO 6876:2001 standards (3 mm of Al thickness). The setting time (33 min), working time (9 min) and flow value (17.4 mm) of the 5 wt% gelatin cement were significantly (P < 0.05) better than those of WMTA (corresponding 165, 6 min and 14.2 mm). The fresh WMTA completely degraded after soaking in a physiological solution for 1 h, while the gelatin cements resisted washout, showing no noticeable breakdown even after 1 day of soaking. The gelatin cement enhanced the higher expression of cell attachment, proliferation and differentiation as compared to WMTA. It was concluded that the 5 wt% gelatin-calcium silicate hybrid cement appears to be promising as a radiopaque biomaterial for medical applications such as endodontics and vertebroplasty.


Assuntos
Compostos de Cálcio/química , Gelatina/química , Osteogênese/efeitos dos fármacos , Silicatos/química , Cimentos Ósseos , Compostos de Cálcio/farmacologia , Células Cultivadas , Meios de Contraste , Meios de Cultura , Cimentos Dentários , Gelatina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura , Silicatos/farmacologia
3.
Chin J Physiol ; 57(3): 121-7, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24826780

RESUMO

D-galactose is known to cause oxidative stress and induce aging-related diseases. Our previous study demonstrated that diosgenin can prevent osteoporosis in menopausal rats. The aim of the present study was to determine the effects of oral administration of diosgenin on bone loss in a D-galactose-induced aging rat model. Three groups of twelve-week-old male Wistar rats received a daily injection of D-galactose (150 mg/kg/day, i.p.) and orally administered diosgenin (0, 10, or 50 mg/kg/day) for eight weeks, while a control group received saline injection (1 ml/kg/day, i.p.), then the femurs were taken to measure mechanical and morphological properties. The results showed that frame volume and femur volume decreased and porosity and frame density increased in the D-galactose-induced aging rats compared to controls and that these effects were prevented by co-administration of diosgenin. This suggests that diosgenin might prevent bone loss during aging and provide beneficial effects in osteoporosis in the elderly.


Assuntos
Dioscorea/química , Diosgenina/farmacologia , Galactose/toxicidade , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Envelhecimento , Animais , Modelos Animais de Doenças , Fêmur/efeitos dos fármacos , Fêmur/patologia , Osteoporose/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
4.
J Dent Sci ; 19(1): 345-356, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303880

RESUMO

Background/purpose: Bacteria-associated oral diseases such as dental caries and periodontitis are widespread epidemics that cause oral pain and loss of function. The purpose of this study was to evaluate the in vitro cytotoxicity and antibacterial activity of different concentrations of hypochlorous acid (HOCl). Materials and methods: Five different concentrations (100, 200, 300, 400, and 500 ppm) of HOCl were evaluated for their antimicrobial efficacy against Gram-negative (A. actinomycetcmcomitans and P. gingivalis) and Gram-positive bacteria (S. mutans and S. sanguinis) after treatment for 1 and 10 min. Sodium hypochlorite (NaOCl) and chlorhexidine (CHX) were used as positive controls. In addition, HOCl was examined for L929 cytotoxicity and RAW 264.7 growth. Results: The bacteriostatic ratio of NaOCl was comparable to that of CHX and significantly (P < 0.05) higher than that of all HOCl solutions. Higher HOCl concentration had significantly (P < 0.05) higher antibacterial effect, and the bacteriostatic ratio of 10 min treatment was slightly higher than that of 1 min treatment. CHX and NaOCl seeded into L929 cells resulted in low cell viability with only 30-39%, much significantly (P < 0.05) lower than all HOCl groups (greater than 80%). All HOCl solutions met the recommendations of ISO 10993-5 and showed no cytotoxicity, although there was a concentration-dependent decrease in cell viability. All antimicrobial agents showed the same trend of response to RAW 264.7 as L929. Conclusion: Within the limit of this study, 400 ppm HOCl disinfectant may be a potential antimicrobial candidate for mouthwash, endodontic irrigants, and periodontitis treatment.

5.
J Mater Sci Mater Med ; 24(10): 2381-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23797829

RESUMO

A facile method was used to prepare polydopamine (PDA) nanoparticles. The effect of the initial pH of the dopamine solution on the formation kinetics, chemical structure, and biocompatibility of PDA nanoparticles was evaluated. Additionally, camptothecin (CPT) was chosen as a model anti-cancer drug with which to evaluate the efficiency of drug loading and release behavior of PDA nanoparticles. The results indicated that the size and yield of PDA nanoparticles, consisting of quinoid and indoline species, were closely related to the pH value of the precursor solution. At a reaction time of 6 h, the uniform particle sizes of PDA nanoparticles were ~400, 250, 150, and 75 nm in solutions with initial pH values of 7.5, 8, 8.5, and 9, respectively, and with corresponding yields of 3, 7, 20, and 34 %. The amounts of CPT loaded in 1 mg of PDA nanoparticles synthesized at pH values of 7.5, 8, 8.5, and 9 for 6 h were 10.85, 11.81, 10.17, and 6.19 lg, respectively. After the first day, 19, 20, 25, and 36 % of the CPT was released from PDA nanoparticles synthesized at pH values of 7.5, 8, 8.5, and 9, respectively, depending on the particle size. The PDA nanoparticles had excellent haemocompatibility: there was no apparent hemolysis, and they did not cause acute toxicity in A549 and HeLa cells. The loading of CPT into PDA nanoparticles significantly reduced the viability of A549 and HeLa cells, comparable to free CPT. It can be concluded that the PDA nanoparticles prepared by our facile method are potential carriers of anticancer drugs for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Indóis/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Polímeros/química , Materiais Biocompatíveis/química , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
6.
J Dent Sci ; 18(4): 1453-1466, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799910

RESUMO

Oral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers. Indeed, aPDT has been used alone or in combination with other treatment options dealing with periodontal disease for the elimination of biofilms from bacterial community to achieve bone formation and/or tissue regeneration. In this review article, in addition to factors affecting the efficacy of aPDT, various photosensitizers, the latest technology and perspectives on aPDT are discussed in detail. More importantly, the article emphasizes the novel design and clinical applications of photosensitizers, as well as the synergistic effects of chemical and biomolecules with aPDT to achieve the complete eradication of biofilms and even enhance the biological performance of tissues surrounding the treated oral area.

7.
J Dent Sci ; 18(4): 1467-1476, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799926

RESUMO

A variety of implant placement and loading protocols are identified, ranging from immediate implant placement on the day of extraction to delayed placement for at least 6 months after complete healing. The method of assessment of implant placement and loading plays an important role in the implantation. The expected clinical outcomes depend largely on multiple factors, such as the macroscopic design of the implant, surgical technique, and the quality and quantity of local bone in contact with the implant, which would be described in detail. The purpose of this literature review was to explore the relationship between the factors influencing the implant placement stability and implant design. By understanding the original appearance of implant design and the stability requirements of implant placement, it is hoped that more research in the future can meet the needs of dentists and patients.

8.
J Dent Sci ; 18(1): 248-263, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36643278

RESUMO

Background/purpose: Bridge stability under loading was influenced by bridge span with the connector and implant abutment design. Thus, the purpose of this study was to evaluate the effects of rigid and non-rigid connector designs and pontic connections of different abutment systems in the tooth-implant supported prosthesis (TISP) at different span distances on the biomechanical stress distribution of the overall system components. Materials and methods: For comparative analysis, rigid and non-rigid bridge connections were fitted with three implant abutment systems (one-piece, two-piece and three-piece), and five implant-to-natural tooth distance configurations (12 mm, 14 mm, 16 mm, 18 mm, and 20 mm) were provided. Results: The maximum stress between TISP components occurred at the distal side of crown margin of cement1 in rigid connector with one-piece group and the bottom of the crown3 in non-rigid connector with one-piece group, while the other groups were more concentrated at the junction between the mesial side of the implant collar and the abutment. In addition, neither the rigid nor non-rigid connector model showed that stress distribution increased proportionally with the bridge span distance. Conclusion: It was clinically recommended that if the implant with a shorter bridge distance of 12 mm from the natural tooth, the rigid connection of the three-piece abutment can be used as the TISP design. If the bridge distance was 18 mm longer, the non-rigid connection of the three-piece abutment could maintain the physiological movement of the natural tooth and avoid the excessive stress on the bone crest around the implant.

9.
J Oral Sci ; 65(1): 15-19, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36403959

RESUMO

PURPOSE: Rapid sintering technology has become one of the most direct methods for shortening the manufacturing time of zirconia restorations. This study aimed to explore the aging resistance of rapid-sintered 5 mol% yttria-partially-stabilized zirconia (5Y-PSZ). METHODS: Specimens were made from two types of 5Y-PSZ material and subjected to rapid sintering (RS) and conventional sintering (CS). After in vitro aging for 5 h, morphology observation, grain size measurement, and phase composition analysis were performed. The mechanical properties were evaluated by biaxial, three-point flexural tests, and the Vickers microhardness test. Results were analyzed by 3-way ANOVA. RESULTS: Both the RS group and the CS group had a dense microstructure. The tested zirconia ceramics had different grain sizes, which were affected by the interaction between the sintering method and aging. Both groups revealed the same characteristic peaks of the cubic phase after aging. Regardless of the sintering method used, there was no significant difference in the mechanical properties of the tested zirconia before and after aging. CONCLUSION: The rapid-sintered 5Y-PSZ materials had a microstructure, phase composition and mechanical properties similar to those of conventional sintered materials. The characteristics of the materials prepared using the two sintering methods did not change significantly after aging.


Assuntos
Materiais Dentários , Zircônio , Teste de Materiais , Cerâmica , Ítrio , Propriedades de Superfície
10.
Pharmaceutics ; 15(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111576

RESUMO

The thermoresponsive drug-loaded hydrogels have attracted widespread interest in the field of medical applications due to their ease of delivery to structurally complex tissue defects. However, drug-resistant infections remain a challenge, which has prompted the development of new non-antibiotic hydrogels. To this end, we prepared chitosan-methacrylate (CTSMA)/gelatin (GEL) thermoresponsive hydrogels and added natural phenolic compounds, including tannic acid, gallic acid, and pyrogallol, to improve the efficacy of hydrogels. This hybrid hydrogel imparted initial crosslinking at physiological temperature, followed by photocuring to further provide a mechanically robust structure. Rheological analysis, tensile strength, antibacterial activity against E. coli, S. aureus, P. gingivalis, and S. mutans, and L929 cytotoxicity were evaluated. The experimental results showed that the hybrid hydrogel with CTSMA/GEL ratio of 5/1 and tannic acid additive had a promising gelation temperature of about 37 °C. The presence of phenolic compounds not only significantly (p < 0.05) enhanced cell viability, but also increased the tensile strength of CTSMA/GEL hybrid hydrogels. Moreover, the hydrogel containing tannic acid revealed potent antibacterial efficacy against four microorganisms. It was concluded that the hybrid hydrogel containing tannic acid could be a potential composite material for medical applications.

11.
J Dent Sci ; 17(1): 184-193, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028037

RESUMO

BACKGROUND/PURPOSE: The three-unit bridge that combines a natural tooth and an implant provides extended treatment possibilities for partially edentulous patients. We conducted a systematic review and meta-analysis of clinical trials to evaluate three-unit porcelain-fused-to-metal (PFM) tooth-implant-supported prosthesis (TISP) compared with implant-supported-prosthesis (ISP) reconstruction outcomes and complications. MATERIALS AND METHODS: The PubMed, Embase, and Cochrane library databases were searched for articles published before February 2021. The meta-analysis used a random-effects model to calculate overall effect size. The study was registered with PROSPERO (number: CRD 42021232606). RESULTS: Seven articles published between 2004 and 2015, with sample sizes ranging from 10 to 250 patients were included. No significant difference in the prosthesis failure rate, implant failure rate, prosthesis technical complication rate, implant technical complication rate, and marginal bone level change was observed between the TISP group and the ISP group. In TISP group, natural tooth failure rate was reported to range from 0% to 4.3%, biological complication related to the natural tooth was reported to range from 0% to 26.9%, and no trial reported natural tooth intrusion. CONCLUSION: The three-unit short-span TISP is a potentially reliable treatment option for patients with missing posterior teeth.

12.
J Dent Sci ; 17(1): 490-499, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028075

RESUMO

BACKGROUND/PURPOSE: The design of the connectors and implant abutments could affect the stress distribution of the tooth-implant supported prosthesis (TISP) entire system after loading. Therefore, the purpose of this study was to investigate the stress distribution of the TISP in different connectors and different implant abutments after loading. MATERIALS AND METHODS: The TISP design used in this study was divided into six models. R1, R2 and R3 represented the tooth and the one-piece, two-piece and three-piece abutment implant system connected by a rigid connector, respectively, while NR1, NR2 and NR3 were the corresponding tooth-abutment implant systems connected by a non-rigid connector. A vertical occlusal load of 50 N was applied at a right angle on the 6 occlusal points of the occlusal surface. RESULTS: As a result, regarding the maximum average stress distribution, R1 and NR1 appeared on the implant fixture, and the other four models were on the implant abutment. On the other hand, regardless of the abutment implant system, the maximum von Mises stress generated by the rigid connector was greater than the corresponding non-rigid connector in the cortical bone around implant. In addition, the three-piece abutment implant system had lower von Mises stress than the one-piece and two-piece implant systems in the cortical bone. CONCLUSION: It is concluded that by adding a flexible non-rigid connector and three-piece abutment device design to TISP, the occlusal load of the implant was dispersed, and the stress could be gradually introduced into the relatively strong implant abutment.

13.
J Mater Chem B ; 10(24): 4640-4649, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35666216

RESUMO

Calcium silicate-based cement (CSC) has attracted much interest because of its favourable osteogenic effect that supports its clinical use. Although CSC has antibacterial activity, this activity still needs to be improved when used in an infected bone defect. Natural polyphenols have been considered antimicrobial reagents. To this end, three different types of polyphenols (gallic acid (GA), pyrogallol (PG) and tannic acid (TA)) with different concentrations as a liquid phase were mixed with bioactive calcium silicate to enhance the antibacterial activity of CSC. The setting time, antibacterial activity, and osteogenic activity of CSC were studied. Evaluation of antibacterial ability and reactive oxygen species (ROS) was performed using Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria, while a human osteoblast-like cell line (MG63) was used to examine osteogenic activity. The experimental results showed that the addition of polyphenols did not remarkably affect the phase composition and morphology of CSC, but changed the setting time and diametral tensile strength. At the same concentration of 1 wt%, the setting time of TA (21 min) was significantly shorter than that of PG (26 min) and GA (68 min), and was indistinguishable from the control cement (20 min). GA had a significantly higher antioxidant activity than PG and TA. As expected, higher concentrations of polyphenols had a more positive impact on ROS generation. More importantly, the incorporation of polyphenols greatly enhanced the antibacterial activity of CSC against E. coli and S. aureus, but had little effect on the in vitro osteogenic activity of MG63 cells and the cytotoxicity of L929 cells. It was concluded that among the three phenolic compounds, the optimal concentration of the liquid phase in the hybrid cement was 5 wt% TA in terms of setting time, strength, antibacterial activity and in vitro osteogenic activity.


Assuntos
Cimentos Ósseos , Infecções Estafilocócicas , Antibacterianos/farmacologia , Compostos de Cálcio , Escherichia coli , Humanos , Polifenóis/farmacologia , Espécies Reativas de Oxigênio , Cimento de Silicato , Silicatos , Staphylococcus aureus
14.
ACS Sens ; 7(7): 1808-1818, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35748570

RESUMO

The measurement of oxygen consumption of adherent cells is a profoundly important issue for estimating the bioenergetic health and metabolism activity of cells. The study describes the construction of a microfluidic chip consisting of an open container connected with a position-raised channel and dissolved oxygen (DO)-sensing gold ultramicroelectrodes for quantifying the oxygen consumption rate (OCR) of adherent cells. The microfluidic chip design can reduce the action of shear force on the adherent cells during medium replacement. The residual concentration of analytes in the open container was only 4.4% after solution replacement via the position-raised channel. The DO reduction current measured by ultramicroelectrodes averaged in the range of 40-60 s presented high reproducibility with a 1.1% relative standard deviation suitable for OCR calculation. After short-term (90 min) cultivation, the microfluidic chip can monitor the time-dependent change in the OCR of 3T3-L1 cells for several hours by repeatedly replacing the culture medium or with the stimulation of different mitochondrial inhibitors. The presented microfluidic cell-based chip has great promise for drug screening and chemosensitivity testing by measuring OCR to evaluate the mitochondrial function of adherent cells.


Assuntos
Consumo de Oxigênio , Oxigênio , Microfluídica , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Reprodutibilidade dos Testes
15.
J Dent Sci ; 17(2): 973-983, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35756805

RESUMO

Background/purpose: The bond strength and durability of highly translucent zirconia ceramics to dentin is still unclear. The purpose of this study was to investigate the effect of various surface treatments on the bond strength of self-adhesive resin cements to high-translucent zirconia crowns and dentin. Materials and methods: A high-transparent zirconia and three self-adhesive resin cements (G-CEM LinkAce (GCL), RelyX U200 (RXU) and TotalCem (TTC)) were used. The zirconia surface was sandblasted with 50 µm alumina particles or coated with an SR Link primer, while a dentin primer (Tetric N-Bond Universal, TBU) was applied to the surface of the dentin. By using three self-adhesive resin cements, zirconia samples were bonded to the dentin surfaces of human teeth. The shear strength of the specimens was measured before and after 10,000-cycle thermocycling or 90-day aging. Results: When using GCL to bond with the untreated dentin and various zirconia surfaces, the shear bond strength of the sandblasted (ZSB) and RS Link primer-coated (ZLK) groups was significantly higher than that of the untreated control group (Zc). However, in the case of TBU-treated dentin, the shear strength of the ZSB + LK + DTBU group was significantly higher than that of the other groups. After thermocycling and aging, the shear strength of the ZSB + LK + DTBU group using GCL and RXU cements decreased slightly, while the TTC showed no impact. Conclusion: The zirconia surface pretreated by sandblasting and bonding agent, which was sequentially bonded with a primer-treated dentin by using resin cements, can provide excellent shear bond strength and anti-aging performance.

16.
ACS Omega ; 6(10): 7106-7118, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748624

RESUMO

Zirconia ceramics with high mechanical properties have been used as a load-bearing implant in the dental and orthopedic surgery. However, poor bone bonding properties and high elastic modulus remain a challenge. Calcium silicate (CaSi)-based ceramic can foster osteoblast adhesion, growth, and differentiation and facilitate bone ingrowth. This study was to prepare CaSi-ZrO2 composites and evaluate their mechanical properties, long-term stability, in vitro osteogenic activity, and antibacterial ability. The Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria and human mesenchymal stem cells (hMSCs) were used to evaluate the antibacterial and osteogenic activities of implants in vitro, respectively. Results indicated that the three-point bending strength of ZrO2 was 486 MPa and Young's modulus was 128 GPa, which were much higher than those of the cortical bone. In contrast, the bending strength and modulus of 20% (201 MPa and 48 GPa, respectively) and 30% CaSi (126 MPa and 20 GPa, respectively) composites were close to the reported strength and modulus of the cortical bone. As expected, higher CaSi content implants significantly enhanced cell growth, differentiation, and mineralization of hMSCs. It is interesting to note the induction ability of CaSi in osteogenic differentiation of hMSCs even when cultured in the absence of an osteogenic differentiation medium. The composite with the higher CaSi contents exhibited the greater bacteriostatic effect against E. coli and S. aureus. In conclusion, the addition of 20 wt % CaSi can effectively improve the mechanical biocompatibility, osteogenesis, and antibacterial activity of ZrO2 ceramics, which may be a potential choice for load-bearing applications.

17.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918682

RESUMO

Intensive efforts have been made to eliminate or substantial reduce bacterial adhesion and biofilm formation on titanium implants. However, in the management of peri-implantitis, the methylene blue (MB) photosensitizer commonly used in photoantimicrobial chemotherapy (PACT) is limited to a low retention on the implant surface. The purpose of this study was to assess enhancive effect of water-soluble quaternary ammonium chitosan (QTS) on MB retention on biofilm-infected SLA (sandblasted, large grid, and acid-etched) Ti alloy surfaces in vitro. The effectiveness of QTS + MB with different concentrations in eliminating Gram-negative A. actinomycetemcomitans or Gram-positive S. mutans bacteria was compared before and after PACT. Bacterial counting and lipopolysaccharide (LPS) detection were examined, and then the growth of human osteoblast-like MG63 cells was evaluated. The results indicated that the synergistic QTS + MB with retention ability significantly decreased the biofilm accumulation on the Ti alloy surface, which was better than the same concentration of 1 wt% methyl cellulose (MC). More importantly, the osteogenic activity of MG63 cells on the disinfected sample treated by QTS + MB-PACT modality was comparable to that of sterile Ti control, significantly higher than that by MC + MB-PACT modality. It is concluded that, in terms of improved retention efficacy, effective bacteria eradication, and enhanced cell growth, synergistically, PACT using the 100 µg/mL MB-encapsulated 1% QTS was a promising modality for the treatment of peri-implantitis.

18.
Colloids Surf B Biointerfaces ; 202: 111699, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33743444

RESUMO

To ensure clinical success, the implant and the surrounding bone tissue must not only be integrated, but also must not be suspected of infection. In this work, an antibacterial and bioactive nanostructured calcium silicate (CaSi) layer on titanium substrate by an electrospray deposition method was prepared, followed by annealing at 700, 750 and 800 °C to improve the bonding strength of the CaSi coating. The phase composition, microstructure and bonding strength of the CaSi coatings were examined. Human mesenchymal stem cells (hMSCs), Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) species were used to analyze the osteogenic and antibacterial activity of the coatings, respectively. Experimental results showed that the as-prepared CaSi coating was mainly composted of ß-dicalcium silicate phase with a particle size of about 300 nm. After annealing, the thickness of the oxidation reaction layer increased obviously from 0.3 µm to 1 µm with increase in temperature, which was confirmed by the cross-sectional morphology and element depth profile. The bonding strength of the coating annealed at 750 °C (19.0 MPa) was significantly higher (p < 0.05) than that of the as-prepared coating (4.4 MPa) and the ISO 13,779 standard (15 MPa). The results of antibacterial efficacy and stem cell osteogenesis consistently elaborated that the 750 °C-annealed coating had higher activity than the as-prepared coating and the Ti control. It is concluded that after annealing at 750 °C, the CaSi nanoparticle-coated Ti implant had good bond strength, osteogenic and antibacterial activity.


Assuntos
Nanopartículas , Titânio , Antibacterianos/farmacologia , Compostos de Cálcio , Materiais Revestidos Biocompatíveis/farmacologia , Estudos Transversais , Escherichia coli , Humanos , Osteogênese , Silicatos , Staphylococcus aureus , Propriedades de Superfície , Titânio/farmacologia
19.
J Mater Sci Mater Med ; 21(4): 1057-68, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19941041

RESUMO

Novel washout-resistant bone substitute materials consisting of gelatin-containing calcium silicate cements (CSCs) were developed. The washout resistance, setting time, diametral tensile strength (DTS), morphology, and phase composition of the hybrid cements were evaluated. The results indicated that the dominant phase of beta-Ca(2)SiO(4) for the SiO(2)-CaO powders increased with an increase in the CaO content of the sols. After mixing with water, the setting times of the CSCs ranged from 10 to 29 min, increasing with a decrease in the amount of CaO in the sols. Addition of gelatin into the CSC significantly prolonged (P < 0.05) the setting time by about 2 and 8 times, respectively, for 5% and 10% gelatin. However, the presence of gelatin appreciably improved the anti-washout and brittle properties of the cements without adversely affecting mechanical strength. It was concluded that 5% gelatin-containing CSC may be useful as bioactive bone repair materials.


Assuntos
Cimentos Ósseos/farmacologia , Compostos de Cálcio/química , Gelatina/química , Dureza/efeitos dos fármacos , Silicatos/química , Água/farmacologia , Cimentos Ósseos/síntese química , Cimentos Ósseos/química , Substitutos Ósseos/síntese química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Cimentação , Força Compressiva/efeitos dos fármacos , Gelatina/farmacologia , Teste de Materiais , Pós , Cimento de Silicato/química , Cimento de Silicato/farmacologia , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração/efeitos dos fármacos , Difração de Raios X
20.
J Mater Sci Mater Med ; 21(5): 1511-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20162323

RESUMO

Titanium metal has good biocompatibility, superior mechanical properties and excellent corrosion resistance. Like most metals, however, it exhibits poor bioactive properties and fails to bond to bone tissue. To improve its bioactivity, bioactive molecules, such as peptides, can be grafted onto titanium surfaces. In order to do this, the first step may be to establish a stable and compatible linking layer on the titanium surface. In this study, we used electrochemical methods to deposit gold (Au) nanoparticles onto titanium substrates, to which we then grafted arginine-glycine-asparagine-cysteine (RGDC) peptides by thiolate covalent coupling. Properties of electrodeposited Au nanoparticles were evaluated using a variety of techniques, including microstructural, chemical and electrochemical measurements. The biological responses of the RGDC-grafted Ti substrates were evaluated using MG3 human osteoblast-like cells. The results of thin-film X-ray diffraction (TFXRD) and scanning electron microscopy (SEM) indicated the polycrystalline orientation of Au nanoparticles deposited on the titanium surfaces with high density and controllable particle size. The RGDC peptide could be covalently bonded to Au-deposited Ti substrates via Au-thiolate species, as expected. Cell morphology showed that, on RGDC-immobilized titanium with Au particles, MG63 cells attached and spread more rapidly than on Ti substrates either without peptide or with direct loading of the peptide. Immunostaining for focal adhesion kinase (FAK) demonstrated that RGDC enhanced cell attachment. The present method for the formation of Au nanoparticles may serve as an alternative route for bioactive molecule immobilization on Ti implants.


Assuntos
Titânio/química , Corrosão , Ouro/metabolismo , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas , Oligopeptídeos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Próteses e Implantes , Titânio/metabolismo , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA