Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 28(11-12): 1969-1979, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36573144

RESUMO

It is well known that plant growth, development, survival and geographical distribution are constrained by extreme climatic conditions, especially extreme low temperature. Under cold stress, cold-inducible promoters were identified as important molecular switches to transcriptionally regulate the initiation of genes associated with cold acclimation processes and enhance the adaptability of plants to cold stimulation. Wheat (Triticum aestivum L.) is one of the most dominating food crops in the world, and wheat crops are generally overwintering with strong cold resistance. Our previous study already proved that heterologous expression of wheat ice recrystallization inhibition (IRI) genes enhanced freezing tolerance in tobacco. However, the upstream regulatory mechanisms of TaIRI are ambiguous. In this study, the space-time specific expression of TaIRI genes in wheat was analyzed by quantitative real-time PCR (qRT-PCR), and results showed that the expression of TaIRI in all tissues was cold-induced and accelerate by exogenous methyl jasmonate (MeJA). Three promoters of TaIRI genes were isolated from wheat genome, and various 5'-deletion fragments of TaIRIp were integrated into ß-glucuronidase (GUS) within vector pCAMBIA1301. The promoter activity of TaIRI genes was determined through transient expression system of tobacco and stable expression of Arabidopsis thaliana. Results revealed that the GUS activity were significantly strengthened by cold and MeJA treatments. This study will provide insights into elucidating the transcription-regulatory mechanism of IRI proteins responding to low temperature.

2.
Physiol Mol Biol Plants ; 24(2): 211-229, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29515316

RESUMO

Adverse environmental conditions limit various aspects of plant growth, productivity, and ecological distribution. To get more insights into the signaling pathways under low temperature, we identified 10 C-repeat binding factors (CBFs), 9 inducer of CBF expression (ICEs) and 10 cold-responsive (CORs) genes from Aegilops-Triticum composite group under cold stress. Conserved amino acids analysis revealed that all CBF, ICE, COR contained specific and typical functional domains. Phylogenetic analysis of CBF proteins from Triticeae showed that these CBF homologs were divided into 11 groups. CBFs from Triticum were found in every group, which shows that these CBFs generated prior to the divergence of the subfamilies of Triticeae. The evolutionary relationship among the ICE and COR proteins in Poaceae were divided into four groups with high multispecies specificity, respectively. Moreover, expression analysis revealed that mRNA accumulation was altered by cold treatment and the genes of three types involved in the ICE-CBF-COR signaling pathway were induced by cold stress. Together, the results make CBF, ICE, COR genes family in Triticeae more abundant, and provide a starting point for future studies on transcriptional regulatory network for improvement of chilling tolerance in crop.

3.
Biochemistry (Mosc) ; 82(10): 1103-1117, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29037131

RESUMO

Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco CYS2-HIS2/genética , Relógios Circadianos/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA