Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 440(7085): 779-82, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16598253

RESUMO

When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.

2.
Science ; 309(5733): 454-6, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16020731

RESUMO

By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we created an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high-rate, fully controlled single-photon pulses has many potential applications for quantum information processing.

3.
Phys Rev Lett ; 88(6): 064101, 2002 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-11863809

RESUMO

We report on an experimental observation of optical wave chaos in a resonator consisting of three standard, high-reflectivity mirrors. The nonseparability of the wave equation necessary for chaos is introduced by violating the paraxial approximation. Until recently progress in optical wave chaos was hampered by the inherent difficulty in realizing suitable microscopic systems; now this novel, macroscopic approach offers complete and easy control and allows unprecedented study of optical wave chaos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA