Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 143(1): 85-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157018

RESUMO

Recombination events establish the patterns of haplotypic structure in a population and estimates of recombination rates are used in several downstream population and statistical genetic analyses. Using suboptimal maps from distantly related populations may reduce the efficacy of genomic analyses, particularly for underrepresented populations such as the Native Hawaiians. To overcome this challenge, we constructed recombination maps using genome-wide array data from two study samples of Native Hawaiians: one reflecting the current admixed state of Native Hawaiians (NH map) and one based on individuals of enriched Polynesian ancestries (PNS map) with the potential to be used for less admixed Polynesian populations such as the Samoans. We found the recombination landscape to be less correlated with those from other continental populations (e.g. Spearman's rho = 0.79 between PNS and CEU (Utah residents with Northern and Western European ancestry) compared to 0.92 between YRI (Yoruba in Ibadan, Nigeria) and CEU at 50 kb resolution), likely driven by the unique demographic history of the Native Hawaiians. PNS also shared the fewest recombination hotspots with other populations (e.g. 8% of hotspots shared between PNS and CEU compared to 27% of hotspots shared between YRI and CEU). We found that downstream analyses in the Native Hawaiian population, such as local ancestry inference, imputation, and IBD segment and relatedness detections, would achieve similar efficacy when using the NH map compared to an omnibus map. However, for genome scans of adaptive loci using integrated haplotype scores, we found several loci with apparent genome-wide significant signals (|Z-score|> 4) in Native Hawaiians that would not have been significant when analyzed using NH-specific maps. Population-specific recombination maps may therefore improve the robustness of haplotype-based statistics and help us better characterize the evolutionary history that may underlie Native Hawaiian-specific health conditions that persist today.


Assuntos
Genômica , Havaiano Nativo ou Outro Ilhéu do Pacífico , Recombinação Genética , Humanos , Havaí/epidemiologia , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética
2.
PLoS Genet ; 17(2): e1009273, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571193

RESUMO

Epidemiological studies of obesity, Type-2 diabetes (T2D), cardiovascular diseases and several common cancers have revealed an increased risk in Native Hawaiians compared to European- or Asian-Americans living in the Hawaiian islands. However, there remains a gap in our understanding of the genetic factors that affect the health of Native Hawaiians. To fill this gap, we studied the genetic risk factors at both the chromosomal and sub-chromosomal scales using genome-wide SNP array data on ~4,000 Native Hawaiians from the Multiethnic Cohort. We estimated the genomic proportion of Native Hawaiian ancestry ("global ancestry," which we presumed to be Polynesian in origin), as well as this ancestral component along each chromosome ("local ancestry") and tested their respective association with binary and quantitative cardiometabolic traits. After attempting to adjust for non-genetic covariates evaluated through questionnaires, we found that per 10% increase in global Polynesian genetic ancestry, there is a respective 8.6%, and 11.0% increase in the odds of being diabetic (P = 1.65×10-4) and having heart failure (P = 2.18×10-4), as well as a 0.059 s.d. increase in BMI (P = 1.04×10-10). When testing the association of local Polynesian ancestry with risk of disease or biomarkers, we identified a chr6 region associated with T2D. This association was driven by an uniquely prevalent variant in Polynesian ancestry individuals. However, we could not replicate this finding in an independent Polynesian cohort from Samoa due to the small sample size of the replication cohort. In conclusion, we showed that Polynesian ancestry, which likely capture both genetic and lifestyle risk factors, is associated with an increased risk of obesity, Type-2 diabetes, and heart failure, and that larger cohorts of Polynesian ancestry individuals will be needed to replicate the putative association on chr6 with T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Obesidade/genética , Asiático/genética , Asiático/estatística & dados numéricos , Índice de Massa Corporal , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Havaí , Humanos , Estilo de Vida/etnologia , Masculino , Herança Multifatorial , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/estatística & dados numéricos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Samoa , População Branca/genética , População Branca/estatística & dados numéricos
3.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37503129

RESUMO

Recombination events establish the patterns of haplotypic structure in a population and estimates of recombination rates are used in several downstream population and statistical genetic analyses. Using suboptimal maps from distantly related populations may reduce the efficacy of genomic analyses, particularly for underrepresented populations such as the Native Hawaiians. To overcome this challenge, we constructed recombination maps using genome-wide array data from two study samples of Native Hawaiians: one reflecting the current admixed state of Native Hawaiians (NH map), and one based on individuals of enriched Polynesian ancestries (PNS map) with the potential to be used for less admixed Polynesian populations such as the Samoans. We found the recombination landscape to be less correlated with those from other continental populations (e.g. Spearman's rho = 0.79 between PNS and CEU (Utah residents with Northern and Western European ancestry) compared to 0.92 between YRI (Yoruba in Ibadan, Nigeria) and CEU at 50 kb resolution), likely driven by the unique demographic history of the Native Hawaiians. PNS also shared the fewest recombination hotspots with other populations (e.g. 8% of hotspots shared between PNS and CEU compared to 27% of hotspots shared between YRI and CEU). We found that downstream analyses in the Native Hawaiian population, such as local ancestry inference, imputation, and IBD segment and relatedness detections, would achieve similar efficacy when using the NH map compared to an omnibus map. However, for genome scans of adaptive loci using integrated haplotype scores, we found several loci with apparent genome-wide significant signals (|Z-score| > 4) in Native Hawaiians that would not have been significant when analyzed using NH-specific maps. Population-specific recombination maps may therefore improve the robustness of haplotype-based statistics and help us better characterize the evolutionary history that may underlie Native Hawaiian-specific health conditions that persist today.

4.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873208

RESUMO

The demographic history of a population drives the pattern of genetic variation and is encoded in the gene-genealogical trees of the sampled alleles. However, existing methods to infer demographic history from genetic data tend to use relatively low-dimensional summaries of the genealogy, such as allele frequency spectra. As a step toward capturing more of the information encoded in the genome-wide sequence of genealogical trees, here we propose a novel framework called the genealogical likelihood (gLike), which derives the full likelihood of a genealogical tree under any hypothesized demographic history. Employing a graph-based structure, gLike summarizes across independent trees the relationships among all lineages in a tree with all possible trajectories of population memberships through time and efficiently computes the exact marginal probability under a parameterized demographic model. Through extensive simulations and empirical applications on populations that have experienced multiple admixtures, we showed that gLike can accurately estimate dozens of demographic parameters when the true genealogy is known, including ancestral population sizes, admixture timing, and admixture proportions. Moreover, when using genealogical trees inferred from genetic data, we showed that gLike outperformed conventional demographic inference methods that leverage only the allele-frequency spectrum and yielded parameter estimates that align with established historical knowledge of the past demographic histories for populations like Latino Americans and Native Hawaiians. Furthermore, our framework can trace ancestral histories by analyzing a sample from the admixed population without proxies for its source populations, removing the need to sample ancestral populations that may no longer exist. Taken together, our proposed gLike framework harnesses underutilized genealogical information to offer exceptional sensitivity and accuracy in inferring complex demographies for humans and other species, particularly as estimation of genome-wide genealogies improves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA