Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 53(1): 249-259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905942

RESUMO

BACKGROUND AND PURPOSE: Circadian rhythms influence the extent of brain injury following subarachnoid hemorrhage (SAH), but the mechanism is unknown. We hypothesized that cerebrovascular myogenic reactivity is rhythmic and explains the circadian variation in SAH-induced injury. METHODS: SAH was modeled in mice with prechiasmatic blood injection. Inducible, smooth muscle cell-specific Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1) gene deletion (smooth muscle-specific Bmal1 1 knockout [sm-Bmal1 KO]) disrupted circadian rhythms within the cerebral microcirculation. Olfactory cerebral resistance arteries were functionally assessed by pressure myography in vitro; these functional assessments were related to polymerase chain reaction/Western blot data, brain histology (Fluoro-Jade/activated caspase-3), and neurobehavioral assessments (modified Garcia scores). RESULTS: Cerebrovascular myogenic vasoconstriction is rhythmic, with a peak and trough at Zeitgeber times 23 and 11 (ZT23 and ZT11), respectively. Histological and neurobehavioral assessments demonstrate that higher injury levels occur when SAH is induced at ZT23, compared with ZT11. In sm-Bmal1 KO mice, myogenic reactivity is not rhythmic. Interestingly, myogenic tone is higher at ZT11 versus ZT23 in sm-Bmal1 KO mice; accordingly, SAH-induced injury in sm-Bmal1 KO mice is more severe when SAH is induced at ZT11 compared to ZT23. We examined several myogenic signaling components and found that CFTR (cystic fibrosis transmembrane conductance regulator) expression is rhythmic in cerebral arteries. Pharmacologically stabilizing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) eliminates the rhythmicity in myogenic reactivity and abolishes the circadian variation in SAH-induced neurological injury. CONCLUSIONS: Cerebrovascular myogenic reactivity is rhythmic. The level of myogenic tone at the time of SAH ictus is a key factor influencing the extent of injury. Circadian oscillations in cerebrovascular CFTR expression appear to underlie the cerebrovascular myogenic reactivity rhythm.


Assuntos
Artérias Cerebrais/metabolismo , Ritmo Circadiano/fisiologia , Microvasos/metabolismo , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/fisiopatologia , Animais , Artérias Cerebrais/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Hemorragia Subaracnóidea/genética
2.
EBioMedicine ; 102: 105058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490104

RESUMO

BACKGROUND: In male mice, a circadian rhythm in myogenic reactivity influences the extent of brain injury following subarachnoid haemorrhage (SAH). We hypothesized that female mice have a different cerebrovascular phenotype and consequently, a distinct SAH-induced injury phenotype. METHODS: SAH was modelled by pre-chiasmatic blood injection. Olfactory cerebral resistance arteries were functionally assessed by pressure myography; these functional assessments were related to brain histology and neurobehavioral assessments. Cystic fibrosis transmembrane conductance regulator (CFTR) expression was assessed by PCR and Western blot. We compared non-ovariectomized and ovariectomized mice. FINDINGS: Cerebrovascular myogenic reactivity is not rhythmic in females and no diurnal differences in SAH-induced injury are observed; ovariectomy does not unmask a rhythmic phenotype for any endpoint. CFTR expression is rhythmic, with similar expression levels compared to male mice. CFTR inhibition studies, however, indicate that CFTR activity is lower in female arteries. Pharmacologically increasing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) reduces myogenic tone at Zeitgeber time 11, but not Zeitgeber time 23. Myogenic tone is not markedly augmented following SAH in female mice and lumacaftor loses its ability to reduce myogenic tone; nevertheless, lumacaftor confers at least some injury benefit in females with SAH. INTERPRETATION: Female mice possess a distinct cerebrovascular phenotype compared to males, putatively due to functional differences in CFTR regulation. This sex difference eliminates the CFTR-dependent cerebrovascular effects of SAH and may alter the therapeutic efficacy of lumacaftor compared to males. FUNDING: Brain Aneurysm Foundation, Heart and Stroke Foundation and Ted Rogers Centre for Heart Research.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Hemorragia Subaracnóidea , Masculino , Camundongos , Feminino , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Caracteres Sexuais , Aminopiridinas/uso terapêutico , Benzodioxóis
3.
Cardiovasc Res ; 119(6): 1403-1415, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36418171

RESUMO

AIMS: Circadian rhythms orchestrate important functions in the cardiovascular system: the contribution of microvascular rhythms to cardiovascular disease progression/severity is unknown. This study hypothesized that (i) myogenic reactivity in skeletal muscle resistance arteries is rhythmic and (ii) disrupting this rhythmicity would alter cardiac injury post-myocardial infarction (MI). METHODS AND RESULTS: Cremaster skeletal muscle resistance arteries were isolated and assessed using standard pressure myography. Circadian rhythmicity was globally disrupted with the ClockΔ19/Δ19 mutation or discretely through smooth muscle cell-specific Bmal1 deletion (Sm-Bmal1 KO). Cardiac structure and function were determined by echocardiographic, hemodynamic and histological assessments. Myogenic reactivity in cremaster muscle resistance arteries is rhythmic. This rhythm is putatively mediated by the circadian modulation of a mechanosensitive signalosome incorporating tumour necrosis factor and casein kinase 1. Following left anterior descending coronary artery ligation, myogenic responsiveness is locked at the circadian maximum, although circadian molecular clock gene expression cycles normally. Disrupting the molecular clock abolishes myogenic rhythmicity: myogenic tone is suspended at the circadian minimum and is no longer augmented by MI. The reduced myogenic tone in ClockΔ19/Δ19 mice and Sm-Bmal1 KO mice associates with reduced total peripheral resistance (TPR), improved cardiac function and reduced infarct expansion post-MI. CONCLUSIONS: Augmented microvascular constriction aggravates cardiac injury post-MI. Following MI, skeletal muscle resistance artery myogenic reactivity increases specifically within the rest phase, when TPR would normally decline. Disrupting the circadian clock interrupts the MI-induced augmentation in myogenic reactivity: therapeutics targeting the molecular clock, therefore, may be useful for improving MI outcomes.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Infarto do Miocárdio/metabolismo , Coração , Hemodinâmica , Resistência Vascular
4.
Front Physiol ; 11: 402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477159

RESUMO

Subarachnoid hemorrhage (SAH) is a devastating cerebral event caused by an aneurysmal rupture. In addition to neurological injury, SAH has significant effects on cardiac function and the peripheral microcirculation. Since these peripheral complications may exacerbate brain injury, the prevention and management of these peripheral effects are important for improving the overall clinical outcome after SAH. In this investigation, we examined the effects of SAH on cardiac function and vascular reactivity in a well-characterized blood injection model of SAH. Standard echocardiographic and blood pressure measurement procedures were utilized to assess cardiac function and hemodynamic parameters in vivo; we utilized a pressure myography approach to assess vascular reactivity in cremaster skeletal muscle resistance arteries ex vivo. We observed that elevated catecholamine levels in SAH stun the myocardium, reduce cardiac output and augment myogenic vasoconstriction in isolated cremaster arteries. These cardiac and vascular effects are driven by beta- and alpha-adrenergic receptor signaling, respectively. Clinically utilized adrenergic receptor antagonists can prevent cardiac injury and normalize vascular function. We found that tumor necrosis factor (TNF) gene deletion prevents the augmentation of myogenic reactivity in SAH: since membrane-bound TNF serves as a mechanosensor in the arteries assessed, alpha-adrenergic signaling putatively augments myogenic vasoconstriction by enhancing mechanosensor activity.

5.
JACC Basic Transl Sci ; 4(8): 940-958, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31909302

RESUMO

Heart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters. This normalization correlates with reduced neuronal injury. Therefore, CFTR therapeutics have emerged as valuable clinical tools to manage cerebrovascular dysfunction, impaired cerebral perfusion, and neuronal injury.

6.
Hypertension ; 73(3): 561-570, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636551

RESUMO

The proto-oncogene c-myb (and corresponding nuclear transcription factor, c-Myb) regulates the proliferation and differentiation of hematologic and vascular smooth muscle cells; however, the role of c-Myb in blood pressure regulation is unknown. Here, we show that mice homozygous for a hypomorphic c-myb allele ( c-myb h/h) conferring reduced c-Myb activity manifest reduced peripheral blood and kidney B220+ B-cells and have decreased systolic (104±2 versus 120±1 mm Hg; P<0.0001) and diastolic blood pressure (71±2 versus 83±1 mm Hg; P<0.0001) compared with WT (wild type) mice. Additionally, c-myb h/h mice had lower susceptibility to deoxycorticosterone acetate-salt experimental hypertension. Although cardiac (echocardiography) and resistance artery (perfusion myography) functions were normal, metabolic cage studies revealed that c-myb h/h mice had increased 24-hour urine output and sodium excretion versus WT. Reconstitution of WT mice with c-myb h/h bone marrow transplant and chimeric bone marrow transplant using mice lacking B-cells ( J H T; h/h>WT and h/h:J H T>WT, respectively) decreased blood pressure and increased 24-hour urine output compared with controls ( WT>WT; WT:J H T>WT). J H T mice also had decreased systolic (103±2 versus 115±1 mm Hg; P<0.0001) and diastolic blood pressure (71±2 versus 79±1; P<0.01) and increased 24-hour urine output versus WT. Real-time quantitative reverse transcription polymerase chain reaction of kidney medulla revealed reduced V2R (vasopressin receptor 2) expression in c-myb h/h and J H T mice. These data implicate B-cells in the regulation of V2R and its associated effects on salt and water handling and blood pressure homeostasis.


Assuntos
Linfócitos B/metabolismo , Pressão Sanguínea/fisiologia , Hipertensão/imunologia , Miócitos de Músculo Liso/metabolismo , Animais , Linfócitos B/patologia , Diferenciação Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-myb/biossíntese , Proteínas Proto-Oncogênicas c-myb/genética , RNA/genética
7.
Diabetes ; 65(7): 1916-28, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207546

RESUMO

Diabetes strongly associates with microvascular complications that ultimately promote multiorgan failure. Altered myogenic responsiveness compromises tissue perfusion, aggravates hypertension, and sets the stage for later permanent structural changes to the microcirculation. We demonstrate that skeletal muscle resistance arteries isolated from patients with diabetes have augmented myogenic tone, despite reasonable blood glucose control. To understand the mechanisms, we titrated a standard diabetes mouse model (high-fat diet plus streptozotocin [HFD/STZ]) to induce a mild increase in blood glucose levels. HFD/STZ treatment induced a progressive myogenic tone augmentation in mesenteric and olfactory cerebral arteries; neither HFD nor STZ alone had an effect on blood glucose or resistance artery myogenic tone. Using gene deletion models that eliminate tumor necrosis factor (TNF) or sphingosine kinase 1, we demonstrate that vascular smooth muscle cell TNF drives the elevation of myogenic tone via enhanced sphingosine-1-phosphate (S1P) signaling. Therapeutically antagonizing TNF (etanercept) or S1P (JTE013) signaling corrects this defect. Our investigation concludes that vascular smooth muscle cell TNF augments resistance artery myogenic vasoconstriction in a diabetes model that induces a small elevation of blood glucose. Our data demonstrate that microvascular reactivity is an early disease marker and advocate establishing therapies that strategically target the microcirculation.


Assuntos
Artérias Cerebrais/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lisofosfolipídeos/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Fator de Necrose Tumoral alfa/metabolismo , Resistência Vascular/efeitos dos fármacos , Animais , Glicemia/metabolismo , Artérias Cerebrais/efeitos dos fármacos , Etanercepte/farmacologia , Humanos , Lisofosfolipídeos/antagonistas & inibidores , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Miografia , Pirazóis/farmacologia , Piridinas/farmacologia , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA