Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1369818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812502

RESUMO

Introduction: IL-2Rα knock out (KO) mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα KO mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα KO to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα KO vascular smooth muscle cells had detectable IL-2Rα. Methods: We used multiple gene and protein-based methods to determine why IL-2Rα KO vascular smooth muscle cells exhibited IL-2Rα protein. These methods included: genomic sequencing, assessing cells and tissues for evidence of maternal microchimerism, and determining the half-life of IL-2Rα protein. Results: Our studies demonstrated the following: (1) in addition to the cell surface, IL-2Rα is localized to the nucleus; (2) the genetic deletion of IL-2Rα is intact in IL-2Rα KO mice; (3) both IL-2Rα KO and WT tissues show evidence of maternal microchimerism, the likely source of IL-2Rα (4) IL-2Rα is transmitted between cells; (5) IL-2Rα has a long half-life; and (6) nuclear IL-2Rα contributes to the regulation of cell proliferation and size. Conclusion: Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.


Assuntos
Núcleo Celular , Subunidade alfa de Receptor de Interleucina-2 , Camundongos Knockout , Animais , Feminino , Camundongos , Núcleo Celular/metabolismo , Quimerismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/metabolismo
2.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961725

RESUMO

IL-2Rα KO mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα knock out (KO) mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα knock mice to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα knock out vascular smooth muscle cells had detectable IL-2Rα. Further studies suggested that the source of IL-2Rα protein was likely maternal heterozygous cells present in KO offspring due to maternal microchimerism. Because the KO was generated by using a neomycin resistance gene insert, we treated cells with G418 and were able to eliminate the majority of IL-2Rα expressing cells. This elimination revealed that IL-2Rα KO vascular smooth muscle cells exhibited increased proliferation, decreased size, and hypodiploid DNA content when compared to wildtype cells. Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA