Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 20(4): 1094-1102, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28968762

RESUMO

The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org) is designed to provide researchers with the tools and services that they need to perform genomic and other 'omic' data analyses. In response to mounting concern over antimicrobial resistance (AMR), the PATRIC team has been developing new tools that help researchers understand AMR and its genetic determinants. To support comparative analyses, we have added AMR phenotype data to over 15 000 genomes in the PATRIC database, often assembling genomes from reads in public archives and collecting their associated AMR panel data from the literature to augment the collection. We have also been using this collection of AMR metadata to build machine learning-based classifiers that can predict the AMR phenotypes and the genomic regions associated with resistance for genomes being submitted to the annotation service. Likewise, we have undertaken a large AMR protein annotation effort by manually curating data from the literature and public repositories. This collection of 7370 AMR reference proteins, which contains many protein annotations (functional roles) that are unique to PATRIC and RAST, has been manually curated so that it projects stably across genomes. The collection currently projects to 1 610 744 proteins in the PATRIC database. Finally, the PATRIC Web site has been expanded to enable AMR-based custom page views so that researchers can easily explore AMR data and design experiments based on whole genomes or individual genes.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos/genética , Integração de Sistemas , Biologia Computacional/tendências , Bases de Dados Genéticas/estatística & dados numéricos , Genoma Microbiano , Humanos , Internet , Anotação de Sequência Molecular
2.
Nucleic Acids Res ; 45(D1): D535-D542, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899627

RESUMO

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by 'virtual integration' to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Bacteriano , Genômica/métodos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Anotação de Sequência Molecular , Proteoma , Proteômica/métodos , Software , Navegador
3.
Nucleic Acids Res ; 42(Database issue): D206-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24293654

RESUMO

In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources.


Assuntos
Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Anotação de Sequência Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Genômica , Internet , Software
4.
Nucleic Acids Res ; 42(Database issue): D581-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225323

RESUMO

The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10,000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Bactérias/classificação , Bactérias/genética , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Perfilação da Expressão Gênica , Genômica , Humanos , Internet , Conformação Proteica , Mapeamento de Interação de Proteínas
5.
Bioinformatics ; 28(24): 3316-7, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23047562

RESUMO

Annotation of metagenomes involves comparing the individual sequence reads with a database of known sequences and assigning a unique function to each read. This is a time-consuming task that is computationally intensive (though not computationally complex). Here we present a novel approach to annotate metagenomes using unique k-mer oligopeptide sequences from 7 to 12 amino acids long. We demonstrate that k-mer-based annotations are faster and approach the sensitivity and precision of blastx-based annotations without loosing accuracy. A last-common ancestor approach was also developed to describe the members of the community.


Assuntos
Metagenômica/métodos , Anotação de Sequência Molecular , Algoritmos , Metagenoma , Análise de Sequência de DNA
6.
Biochim Biophys Acta ; 1810(10): 967-77, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21421023

RESUMO

BACKGROUND: The development of next generation sequencing technology is rapidly changing the face of the genome annotation and analysis field. One of the primary uses for genome sequence data is to improve our understanding and prediction of phenotypes for microbes and microbial communities, but the technologies for predicting phenotypes must keep pace with the new sequences emerging. SCOPE OF REVIEW: This review presents an integrated view of the methods and technologies used in the inference of phenotypes for microbes and microbial communities based on genomic and metagenomic data. Given the breadth of this topic, we place special focus on the resources available within the SEED Project. We discuss the two steps involved in connecting genotype to phenotype: sequence annotation, and phenotype inference, and we highlight the challenges in each of these steps when dealing with both single genome and metagenome data. MAJOR CONCLUSIONS: This integrated view of the genotype-to-phenotype problem highlights the importance of a controlled ontology in the annotation of genomic data, as this benefits subsequent phenotype inference and metagenome annotation. We also note the importance of expanding the set of reference genomes to improve the annotation of all sequence data, and we highlight metagenome assembly as a potential new source for complete genomes. Finally, we find that phenotype inference, particularly from metabolic models, generates predictions that can be validated and reconciled to improve annotations. GENERAL SIGNIFICANCE: This review presents the first look at the challenges and opportunities associated with the inference of phenotype from genotype during the next generation sequencing revolution. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.


Assuntos
Genótipo , Fenótipo , Análise de Sequência de DNA/métodos , Animais , Humanos , Metagenômica/métodos
7.
BMC Bioinformatics ; 11: 319, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20546611

RESUMO

BACKGROUND: The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. RESULTS: The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. CONCLUSIONS: We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.


Assuntos
Bases de Dados Genéticas , Genoma , Metagenômica/métodos , Software
8.
Nucleic Acids Res ; 35(Database issue): D347-53, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17145713

RESUMO

The National Microbial Pathogen Data Resource (NMPDR) (http://www.nmpdr.org) is a National Institute of Allergy and Infections Disease (NIAID)-funded Bioinformatics Resource Center that supports research in selected Category B pathogens. NMPDR contains the complete genomes of approximately 50 strains of pathogenic bacteria that are the focus of our curators, as well as >400 other genomes that provide a broad context for comparative analysis across the three phylogenetic Domains. NMPDR integrates complete, public genomes with expertly curated biological subsystems to provide the most consistent genome annotations. Subsystems are sets of functional roles related by a biologically meaningful organizing principle, which are built over large collections of genomes; they provide researchers with consistent functional assignments in a biologically structured context. Investigators can browse subsystems and reactions to develop accurate reconstructions of the metabolic networks of any sequenced organism. NMPDR provides a comprehensive bioinformatics platform, with tools and viewers for genome analysis. Results of precomputed gene clustering analyses can be retrieved in tabular or graphic format with one-click tools. NMPDR tools include Signature Genes, which finds the set of genes in common or that differentiates two groups of organisms. Essentiality data collated from genome-wide studies have been curated. Drug target identification and high-throughput, in silico, compound screening are in development.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma Bacteriano , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , DNA Bacteriano/química , Sistemas de Liberação de Medicamentos , Genes Bacterianos , Genes Essenciais , Genômica , Internet , Homologia de Sequência do Ácido Nucleico , Software , Interface Usuário-Computador
9.
Nucleic Acids Res ; 33(17): 5691-702, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16214803

RESUMO

The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.


Assuntos
Genoma Arqueal , Genoma Bacteriano , Genômica/métodos , Software , Acil Coenzima A/metabolismo , Coenzima A/biossíntese , Biologia Computacional , Internet , Leucina/metabolismo , Proteínas Ribossômicas/classificação , Terminologia como Assunto , Vocabulário Controlado
10.
Sci Rep ; 5: 8365, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666585

RESUMO

The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.


Assuntos
Anotação de Sequência Molecular/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA