Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Angew Chem Int Ed Engl ; 60(33): 18272-18279, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096148

RESUMO

Activity-based probes enable discrimination between the active enzyme and its inactive or inactivated counterparts. Since metalloproteases catalysis is non-covalent, activity-based probes targeting them have been systematically developed by decorating reversible inhibitors with photo-crosslinkers. By exploiting two types of ligand-guided chemistry, we identified novel activity-based probes capable of covalently modifying the active site of matrix metalloproteases (MMPs) without any external trigger. The ability of these probes to label recombinant MMPs was validated in vitro and the identity of the main labelling sites within their S3 ' region unambiguously assigned. We also demonstrated that our affinity probes can react with rhMMP12 at nanogram scale (that is, at 0.07 % (w/w)) in complex proteomes. Finally, this ligand-directed chemistry was successfully applied to label active MMP-12 secreted by eukaryote cells. We believe that this approach could be transferred more widely to many other metalloproteases, thus contributing to tackle their unresolved proteomic profiling in vivo.

2.
Appl Microbiol Biotechnol ; 101(4): 1359-1364, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28083651

RESUMO

Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive (14C) labeling of bioactive products, in order to facilitate the screening for new drugs.


Assuntos
Cianobactérias/metabolismo , Fotossíntese/fisiologia , Biodiversidade , Cianobactérias/enzimologia , Cianobactérias/genética , Cianobactérias/efeitos da radiação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo
3.
Bioconjug Chem ; 27(10): 2407-2417, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27564088

RESUMO

In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.


Assuntos
Metaloproteinase 12 da Matriz/análise , Imagem Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animais , Carbocianinas , Técnicas de Química Sintética , Cristalografia por Raios X , Células HeLa , Humanos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Sondas Moleculares/farmacocinética , Óptica e Fotônica/métodos , Peptídeos/química , Distribuição Tecidual
4.
Mol Pharm ; 13(12): 4094-4105, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27656777

RESUMO

Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC]cDPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC]c) which specifically binds hLDLR with a KD of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC]c), which showed the highest KD value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 106 s-1.M-1 range, and off-rates varying from the low 10-2 s-1 to the 10-1 s-1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"]c), showing a KD of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3H-VH4127 in wild-type or ldlr -/- mice confirmed their active LDLR targeting in vivo. Overall, this study extends our previous work toward a diversified portfolio of LDLR-targeted peptide vectors with validated LDLR-targeting potential in vivo.


Assuntos
Vetores Genéticos/normas , Fragmentos de Peptídeos/farmacologia , Receptores de LDL/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Sistemas de Liberação de Medicamentos , Endocitose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/farmacocinética , Receptores de LDL/fisiologia , Relação Estrutura-Atividade , Distribuição Tecidual
5.
Bioconjug Chem ; 26(5): 906-18, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891152

RESUMO

Dendritic polyglycerol sulfate (dPGS) is a biocompatible, bioactive polymer which exhibits anti-inflammatory activity in vivo and thus represents a promising candidate for therapeutic and diagnostic applications. To investigate the in vivo pharmacokinetics in detail, dPGS with a molecular weight of approx. 10 kDa was radiolabeled with (3)H and (64)Cu, and evaluated by performing biodistribution studies and small animal positron emission tomography (PET). (3)H-labeling was accomplished by an oxidation-reduction process with sodium periodate and [(3)H]-borohydride. (64)Cu-labeling was achieved by conjugation of isothiocyanate- or maleimide-functionalized copper(II)-chelating ligands based on 1,4-bis(2-pyridinylmethyl)-1,4,7-triazacyclononane (DMPTACN) to an amino functionalized dPGS scaffold, followed by reaction with an aqueous solution containing (64)CuCl2. Independent biodistribution by radioimaging and PET imaging studies with healthy mice and rats showed that the neutral dPG was quantitatively renally eliminated, whereas the polysulfated analogues accumulated mainly in the liver and spleen. Small amounts of the dPGS derivatives were slowly excreted via the kidneys. The degree of uptake by the reticuloendothelial system (RES) was similar for dPGS with 40% or 85% sulfation, and surface modification of the scaffold with the DMPTACN chelator did not appear to significantly affect the biodistribution profile. On the basis of our data, the applicability of bioactive dPGS as a therapeutic agent might be limited due to organ accumulation even after 3 weeks. The inert characteristics and clearance of the neutral polymer, however, emphasizes the potential of dPG as a multifunctional scaffold for various nanomedical applications.


Assuntos
Radioisótopos de Cobre/química , Dendrímeros/síntese química , Dendrímeros/farmacocinética , Glicerol/química , Polímeros/química , Sulfatos/química , Trítio/química , Animais , Compostos Aza/química , Quelantes/química , Técnicas de Química Sintética , Dendrímeros/química , Estabilidade de Medicamentos , Feminino , Marcação por Isótopo , Camundongos , Piperidinas/química , Tomografia por Emissão de Pósitrons , Radioquímica , Ratos , Distribuição Tecidual
6.
Top Curr Chem ; 360: 1-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25370521

RESUMO

The development of transition-state analogs is a major objective in enzymology, not only for developing potent inhibitors of enzymes but also for dissecting enzyme catalytic mechanisms. Phosphinic peptides, which share closed structural similarities with the transition-state of peptide substrate upon hydrolysis, have thus been considered for identifying potent inhibitors of proteases. Focusing on the zinc-proteases family, this review presents the most important synthetic efforts performed to obtain the desired compounds. Crystal structures of the phosphinic peptides in interaction with their zinc-protease targets are reported to illustrate the structural features which may explain the potency of these compounds and how they contribute to uncover key enzyme catalytic residues. Based on a remarkable metabolic stability, phosphinic peptides can be used to probe the in vivo function of zinc-proteases. Progress on chemistry and better understanding on the functional roles of zinc-proteases should allow transferring these compounds from shelf to clinic.


Assuntos
Metaloproteases/antagonistas & inibidores , Peptídeos/química , Ácidos Fosfínicos/química , Inibidores de Proteases/química , Zinco/química , Animais , Bacillus/química , Bacillus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Metaloproteases/química , Modelos Moleculares , Peptídeos/síntese química , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Inibidores de Proteases/síntese química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
7.
Chemistry ; 21(8): 3278-89, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25641366

RESUMO

A P-C bond-forming reaction between silyl phosphonites and Morita-Baylis-Hillman acetates (MBHAs) is explored as a general alternative towards medicinally relevant ß-carboxyphosphinic structural motifs. Conversion rates of diversely substituted MBHAs to phosphinic acids 9 or 14 that were recorded by using (31) P NMR spectroscopy revealed unexpected reactivity differences between ester and nitrile derivatives. These kinetic profiles and DFT calculations support a mechanistic scenario in which observed differences can be explained from the "lateness" of transition states. In addition, we provide experimental evidence suggesting that enolates due to initial P-Michael addition are not formed. Based on the proposed mechanistic scenario in conjunction with DFT calculations, an interpretation of the E/Z stereoselectivity differences between ester and nitriles is proposed. Synthetic opportunities stemming from this transformation are presented, which deal with the preparation of several synthetically capricious phosphinic building blocks, whose access through the classical P-Michael synthetic route is not straightforward.

8.
J Biol Chem ; 288(8): 5636-44, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23271741

RESUMO

Matrix metalloproteases (MMPs) have attracted considerable attention as critical mediators of pathological tissue remodeling processes. However it remains an unresolved challenge to detect their active forms in biological samples. To prove the efficacy of a recently developed MMP activity-based probe, we examined the content in MMP active forms of bronchoalveolar lavage fluids (BALf) from male C57BL/6 mice exposed to ultrafine carbon black nanoparticles, a model of chronic obstructive pulmonary disease. This probe was shown to label proteins, mostly expressed in BALf of mice exposed to nanoparticles. Using competition assays with a selective MMP-12 inhibitor as well as MMP-12 knock-out mice, one of these proteins was identified as the active form of the catalytic domain of MMP-12. This new probe can detect the active form of MMP-12 down to a threshold of 1 fmol. Radioactive counting showed the concentration of the active form of MMP-12 to be around 1 fmol/µl in BALf from nanoparticle-treated mice. A less sensitive probe would therefore not have detected MMP-12. As the probe can detect other MMPs in the femtomolar range, it is a potentially powerful tool for monitoring the levels of MMP active forms in various diseases.


Assuntos
Regulação Enzimológica da Expressão Gênica , Metaloproteinase 12 da Matriz/metabolismo , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Domínio Catalítico , Ativação Enzimática , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Químicos , Nanopartículas , Doença Pulmonar Obstrutiva Crônica/metabolismo , alfa-Macroglobulinas/metabolismo
9.
Int J Cancer ; 135(12): 2749-59, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24676718

RESUMO

Matrix metalloproteinases like MMP-13 cleave and remodel the extracellular matrix and thereby play a crucial role in tumor progression in vivo. Using a highly selective inhibitor to block MMP-13 protein activity, we demonstrate a striking inhibitory effect on invasive tumor growth and vascularization in murine skin squamous cell carcinoma (SCC). Therapy outcome critically depends on animal age in C57Bl/6 mice and was successful in old female but not in young female mice. Treatment success was recovered by ovariectomy in young and abolished by 17ß-estradiol supplementation in old mice, suggesting a hormone dependent inhibitor effect. Responsiveness of the tumorigenic keratinocytes BDVII and fibroblasts to 17ß-estradiol was confirmed in vitro, where MMP-13 inhibitor treatment led to a reduction of cell invasion and vascular endothelial growth factor (VEGF) release. This correlated well with a less invasive and vascularized tumor in treated mice in vivo. 17ß-estradiol supplementation also reduced invasion and VEGF release in vitro with no additional reduction on MMP-13 inhibitor treatment. This suggests that low 17ß-estradiol levels in old mice in vivo lead to enhanced MMP-13 levels and VEGF release, allowing a more effective inhibitor treatment compared to young mice. In our study, we present a strong link between lower estrogen levels in old female mice, an elevated MMP-13 level, which results in a more effective MMP-13 inhibitor treatment in fibroblasts and SCC cells in vitro and in vivo.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Estrogênios/metabolismo , Metaloproteinase 13 da Matriz/fisiologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Estradiol/metabolismo , Matriz Extracelular/enzimologia , Feminino , Fibroblastos/citologia , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , Neoplasias Cutâneas/tratamento farmacológico , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
FASEB J ; 27(11): 4395-405, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23913860

RESUMO

Matrix metalloproteinase (MMP)-13 is one of the mammalian collagenases that play key roles in tissue remodelling and repair and in progression of diseases such as cancer, arthritis, atherosclerosis, and aneurysm. For collagenase to cleave triple helical collagens, the triple helical structure has to be locally unwound before hydrolysis, but this process is not well understood. We report crystal structures of catalytically inactive full-length human MMP-13(E223A) in complex with peptides of 14-26 aa derived from the cleaved prodomain during activation. Peptides are bound to the active site of the enzyme by forming an extended ß-strand with Glu(40) or Tyr(46) inserted into the S1' specificity pocket. The structure of the N-terminal part of the peptides is variable and interacts with different parts of the catalytic domain. Those areas are designated substrate-dependent exosites, in that they accommodate different peptide structures, whereas the precise positioning of the substrate backbone is maintained in the active site. These modes of peptide-MMP-13 interactions have led us to propose how triple helical collagen strands fit into the active site cleft of the collagenase.


Assuntos
Domínio Catalítico , Colágeno/química , Metaloproteinase 13 da Matriz/química , Simulação de Acoplamento Molecular , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Colágeno/metabolismo , Cristalografia por Raios X , Ácido Glutâmico/química , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Peptídeos/metabolismo , Ligação Proteica , Tirosina/química
11.
J Struct Biol ; 182(3): 246-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23567804

RESUMO

Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects.


Assuntos
Desenho de Fármacos , Metaloproteinase 12 da Matriz/química , Metaloproteinase 9 da Matriz/química , Complexos Multiproteicos/química , Conformação Proteica , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Humanos , Ligantes , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Ligação Proteica , Multimerização Proteica
12.
J Biol Chem ; 287(40): 33607-14, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22869371

RESUMO

Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys(165), a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys(165) modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys(165) was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys(165) is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys(165). The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors.


Assuntos
Toxinas Botulínicas Tipo A/antagonistas & inibidores , Clostridium botulinum/metabolismo , Cisteína/química , Domínio Catalítico , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/química , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteína 25 Associada a Sinaptossoma/química , Zinco/química
13.
J Biol Chem ; 287(32): 26647-56, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22689580

RESUMO

A series of pseudo-peptides with general formula X-l-Glu-NH(2) (with X corresponding to an acyl moiety with a long aryl-alkyl side chain) have been synthesized, evaluated as inhibitors of matrix metalloproteases (MMPs), and found to display remarkable nanomolar affinity. The loss in potency associated with a substitution of the P(2)' l-glutamate by a l-glutamine corroborates the importance of a carboxylate at this position. The binding mode of some of these inhibitors was characterized in solution and by x-ray crystallography in complex with various MMPs. The x-ray crystal structures reveal an unusual binding mode with the glutamate side chain chelating the active site zinc ion. Competition experiments between these inhibitors and acetohydroxamic acid, a small zinc-binding molecule, are in accord with the crystallographic results. One of these pseudo-dipeptides displays potency and selectivity toward MMP-12 similar to the best MMP-12 inhibitors reported to date. This novel family of pseudo peptides opens new opportunities to develop potent and selective inhibitors for several metzincins.


Assuntos
Dipeptídeos/farmacologia , Ácido Glutâmico/química , Inibidores de Metaloproteinases de Matriz , Inibidores de Proteases/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Dipeptídeos/química , Metaloproteinases da Matriz/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/química , Especificidade por Substrato
14.
J Biol Chem ; 287(40): 33581-93, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22825851

RESUMO

BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Glicoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metaloproteinases da Matriz/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo
15.
Chembiochem ; 14(1): 107-14, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23203916

RESUMO

A photoaffinity probe based on the scaffold of a potent broad-spectrum phosphinic peptide inhibitor of matrix metalloproteinases (MMPs) has been developed. A photolabile diazirine group for covalent modification of MMP active forms was incorporated at the P(1) ' position, and a tritium radioactive label for the sensitive detection of MMP covalent adducts by radioimaging was attached. The probe was characterized on seven catalytic domains of human MMPs (MMP-2, -3, -8, -9, -12, -13 and -14) and was found to display nanomolar affinities towards this set of MMPs, covalently modifying them with crosslinking yields varying from 12 to 58 %, thus leading to highly sensitive detection of these MMPs. In a complex proteome complemented with four recombinant MMPs (MMP-2, -9, -12 and -13), this probe enabled their simultaneous detection with a threshold of few femtomoles and low background labelling. Those properties should make this new pan-activity-based MMP probe a valuable tool for the detection of MMP active forms from biological fluids or tissue extracts.


Assuntos
Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Metaloproteinases da Matriz/metabolismo , Técnicas de Sonda Molecular , Marcadores de Fotoafinidade/química , Marcadores de Fotoafinidade/metabolismo , Azidas/química , Azirinas/química , Domínio Catalítico , Reagentes de Ligações Cruzadas/síntese química , Humanos , Luz , Metaloproteinases da Matriz/química , Marcadores de Fotoafinidade/síntese química
16.
Microb Cell Fact ; 12: 37, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607455

RESUMO

BACKGROUND: Disulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited. RESULTS: Here we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization. CONCLUSIONS: Our results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB(-)/gor(-) strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.


Assuntos
Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Citoplasma/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Bioorg Med Chem Lett ; 23(10): 2968-73, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562595

RESUMO

A small library of peptide amides was designed to profile the cathepsin L active site. Within the cathepsin family of cysteine proteases, the first round of selection was on cathepsin L and cathepsin B, and then selected hits were further evaluated for binding to cathepsin K and cathepsin S. Five highly selective sequences with submicromolar affinities towards cathepsin L were identified. An acyloxymethyl ketone warhead was then attached to these sequences. Although these original irreversible inhibitors inactivate cathepsin L, it appears that the nature of the warhead drastically impact the selectivity profile of the resulting covalent inhibitors.


Assuntos
Amidas/farmacologia , Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Amidas/síntese química , Amidas/química , Domínio Catalítico/efeitos dos fármacos , Catepsina L/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Conformação Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
18.
Mol Metab ; 67: 101662, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566984

RESUMO

OBJECTIVE: The liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood. We previously suggested that out of the three M1, M2 and M3 subdomains of the C-terminal Cys/His-rich-domain (CHRD) of PCSK9, only M2 is critical for the activity of extracellular of PCSK9 on cell surface LDLR. This likely implicates the binding of M2 to an unknown membrane-associated "protein X" that would escort the complex to endosomes/lysosomes for degradation. We reported that a nanobody P1.40 binds the M1 and M3 domains of the CHRD and inhibits the function of PCSK9. It was also reported that the cytosolic adenylyl cyclase-associated protein 1 (CAP1) could bind M1 and M3 subdomains and enhance the activity of PCSK9. In this study, we determined the 3-dimensional structure of the CHRD-P1.40 complex to understand the intricate interplay between P1.40, CAP1 and PCSK9 and how they regulate LDLR degradation. METHODS: X-ray diffraction of the CHRD-P1.40 complex was analyzed with a 2.2 Å resolution. The affinity and interaction of PCSK9 or CHRD with P1.40 or CAP1 was analyzed by atomic modeling, site-directed mutagenesis, bio-layer interferometry, expression in hepatic cell lines and immunocytochemistry to monitor LDLR degradation. The CHRD-P1.40 interaction was further analyzed by deep mutational scanning and binding assays to validate the role of predicted critical residues. Conformational changes and atomic models were obtained by small angle X-ray scattering (SAXS). RESULTS: We demonstrate that PCSK9 exists in a closed or open conformation and that P1.40 favors the latter by binding key residues in the M1 and M3 subdomains of the CHRD. Our data show that CAP1 is well secreted by hepatic cells and binds extracellular PCSK9 at distinct residues in the M1 and M3 modules and in the acidic prodomain. CAP1 stabilizes the closed conformation of PCSK9 and prevents P1.40 binding. However, CAP1 siRNA only partially inhibited PCSK9 activity on the LDLR. By modeling the previously reported interaction between M2 and an R-X-E motif in HLA-C, we identified Glu567 and Arg549 as critical M2 residues binding HLA-C. Amazingly, these two residues are also required for the PCSK9-induced LDLR degradation. CONCLUSIONS: The present study reveals that CAP1 enhances the function of PCSK9, likely by twisting the protein into a closed configuration that exposes the M2 subdomain needed for targeting the PCSK9-LDLR complex to degradation compartments. We hypothesize that "protein X", which is expected to guide the LDLR-PCSK9-CAP1 complex to these compartments after endocytosis into clathrin-coated vesicles, is HLA-C or a similar MHC-I family member. This conclusion is supported by the PCSK9 natural loss-of-function Q554E and gain-of-function H553R M2 variants, whose consequences are anticipated by our modeling.


Assuntos
Antígenos HLA-C , Pró-Proteína Convertase 9 , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Receptores de LDL/metabolismo
19.
Chem Sci ; 14(4): 869-888, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755705

RESUMO

Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct ß-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.

20.
Chembiochem ; 13(17): 2616-21, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23125066

RESUMO

Detecting the active forms of proteases by using activity-based probes in complex proteomes has become an intensively investigated field of research over the past years because many pathogenic conditions involve alterations in protease activities. The detection of lysosomal cysteine proteases, the cathepsins, has mostly relied on the use of probes that incorporate reactive electrophilic moieties to modify a cysteine in the active site covalently. Here we report the first example of an activity-based probe that targets the cathepsins and incorporates a photoactivatable benzophenone group for covalent labelling. When tested on a set of five cathepsins (B, K, L, S and V), this probe selectively labelled the active site of cathepsin L. Furthermore, when tested on crude cell extracts, the probe specifically detected cathepsin L quantities as low as a few picomoles. This study suggests that photoaffinity labelling is a promising approach for developing highly selective and useful cathepsin L probes. In particular, this probe might allow the detection of small amounts of the secreted active cathepsin L form in the cellular microenvironment in vitro and ex vivo.


Assuntos
Catepsina L/metabolismo , Ensaios Enzimáticos/métodos , Marcadores de Fotoafinidade/metabolismo , Benzofenonas/química , Domínio Catalítico , Catepsina L/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Marcadores de Fotoafinidade/química , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA