Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE ASME Trans Mechatron ; 26(6): 3104-3115, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34916771

RESUMO

This paper presents the design and validation of a backdrivable powered knee orthosis for partial assistance of lower-limb musculature, which aims to facilitate daily activities in individuals with musculoskeletal disorders. The actuator design is guided by design principles that prioritize backdrivability, output torque, and compactness. First, we show that increasing the motor diameter while reducing the gear ratio for a fixed output torque ultimately reduces the reflected inertia (and thus backdrive torque). We also identify a tradeoff with actuator torque density that can be addressed by improving the motor's thermal environment, motivating our design of a custom Brushless DC motor with encapsulated windings. Finally, by designing a 7:1 planetary gearset directly into the stator, the actuator has a high package factor that reduces size and weight. Benchtop tests verify that the custom actuator can produce at least 23.9 Nm peak torque and 12.78 Nm continuous torque, yet has less than 2.68 Nm backdrive torque during walking conditions. Able-bodied human subjects experiments (N=3) demonstrate reduced quadriceps activation with bilateral orthosis assistance during lifting-lowering, sit-to-stand, and stair climbing. The minimal transmission also produces negligible acoustic noise.

2.
J Sports Sci ; 38(10): 1096-1104, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32178581

RESUMO

This study aimed to describe stationary overhead throwing biomechanics in South African cricketers, considering playing level, and relative to baseball. Kinematics and ground reaction forces were collected during throwing trials. Inverse dynamics was used to calculate joint kinetics. Inter-subject variability was calculated using the coefficient of variance. A one-dimensional statistical parametric mapping ANOVA was conducted to assess differences between the kinematic waveforms in elite and amateur cricketers (p < 0.05). Fifteen cricketers (elite = 8; amateur = 7) participated in this study. The basic parameters of a cricketer's throwing action are described. Substantial inter-subject variability was noted for all variables, except lumbopelvic movement. Cricketers presented with 74.9 ± 27.3° glenohumeral external rotation and 94.8 ± 23.7° elbow flexion, at maximum external rotation (MER). Amateur cricketers displayed decreased elbow flexion range of motion between 2-14% of the throwing cycle (F = 9.365;p = 0.01); greater shoulder (121.0vs85.9 N; F = 0.36,p = 0.021) and elbow compression (105.6vs72.8 N;F = 0.007,p = 0.043), and superior shoulder force (203.1vs115.5 N;F = 2.43,p = 0.022) at MER, when compared with elite cricketers. Cricketers display similarities to baseball pitchers when throwing overhead from a stationary position. The "preparatory arc" utilised is different to the wind-up noted for baseball. The forces exerted on the shoulder and elbow, in amateur cricketers specifically, are substantially greater at MER and may indicate the potential risk for injury.


Assuntos
Críquete/fisiologia , Extremidade Superior/fisiologia , Adulto , Braço/fisiologia , Fenômenos Biomecânicos , Cotovelo/fisiologia , Humanos , Região Lombossacral/fisiologia , Masculino , Movimento/fisiologia , Pelve/fisiologia , Amplitude de Movimento Articular , Ombro/fisiologia , Estudos de Tempo e Movimento , Adulto Jovem
3.
Int J Sports Med ; 38(10): 770-775, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28768339

RESUMO

The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated.


Assuntos
Articulação do Tornozelo/fisiologia , Marcha , Articulação do Joelho/fisiologia , Corrida/fisiologia , Sapatos , Adulto , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos , Feminino , Pé/fisiologia , Humanos , Masculino , Amplitude de Movimento Articular
4.
Sci Robot ; 9(94): eadr8282, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292806

RESUMO

The quadriceps are particularly susceptible to fatigue during repetitive lifting, lowering, and carrying (LLC), affecting worker performance, posture, and ultimately lower-back injury risk. Although robotic exoskeletons have been developed and optimized for specific use cases like lifting-lowering, their controllers lack the versatility or customizability to target critical muscles across many fatiguing tasks. Here, we present a task-adaptive knee exoskeleton controller that automatically modulates virtual springs, dampers, and gravity and inertia compensation to assist squatting, level walking, and ramp and stairs ascent/descent. Unlike end-to-end neural networks, the controller is composed of predictable, bounded components with interpretable parameters that are amenable to data-driven optimization for biomimetic assistance and subsequent application-specific tuning, for example, maximizing quadriceps assistance over multiterrain LLC. When deployed on a backdrivable knee exoskeleton, the assistance torques holistically reduced quadriceps effort across multiterrain LLC tasks (significantly except for level walking) in 10 human users without user-specific calibration. The exoskeleton also significantly improved fatigue-induced deficits in time-based performance and posture during repetitive lifting-lowering. Last, the system facilitated seamless task transitions and garnered a high effectiveness rating postfatigue over a multiterrain circuit. These findings indicate that this versatile control framework can target critical muscles across multiple tasks, specifically mitigating quadriceps fatigue and its deleterious effects.


Assuntos
Exoesqueleto Energizado , Remoção , Fadiga Muscular , Músculo Quadríceps , Torque , Humanos , Fadiga Muscular/fisiologia , Músculo Quadríceps/fisiologia , Fenômenos Biomecânicos , Adulto , Masculino , Desenho de Equipamento , Adulto Jovem , Feminino , Postura/fisiologia , Caminhada , Articulação do Joelho/fisiologia , Joelho/fisiologia , Robótica/instrumentação , Análise e Desempenho de Tarefas
5.
IEEE Open J Control Syst ; 1: 15-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673605

RESUMO

Task-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-invariant assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines. However, this approach did not have the flexibility to reproduce joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict assumptions related to input-output passivity, which ensures the human remains in control of energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary activities of daily life, this paper generalizes this energy shaping framework by incorporating vertical ground reaction forces and global planar orientation into the basis set, while preserving passivity between the human joint torques and human joint velocities. We present an experimental implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the versatility of this control approach and its effect on muscular effort.

6.
Eur J Sport Sci ; 22(11): 1686-1694, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34498548

RESUMO

Overhead throwing by cricketers when fielding with different approaches has been described using two-dimensional analysis. Currently, the three-dimensional kinematic and kinetic characteristics of an overhead throw performed by cricketers following a run-up are unknown. Fifteen South African cricketers performed six overhead throws, from a stationary position and with a run-up over 15-20 m prior to fielding a ball, respectively. Kinematic data and ground reaction forces were collected throughout the throwing trials. Joint kinetics were calculated using inverse dynamics. An independent t-test or Mann-Whitney U-test was used to determine joint kinetic differences between throwing approaches. Differences between the kinematic waveforms for stationary and run-up throwing approaches were assessed using one-dimensional statistical parametric mapping ANOVA (P < 0.05). The shoulder, elbow and thoraco-lumbar joints displayed similar kinematics between throwing approaches. The run-up approach displayed increased hip flexion between 0-34% and 57-100% (F(1, 28) = 6.726; P = 0.01) of the throwing cycle; and lumbo-pelvic flexion between 57 and 65% (F(1, 28) = 6.823; P = 0.02) of the throwing cycle; greater shoulder compression (F(1, 28) = 1.036; P = 0.02) and posterior force (F(1, 28) = 1.052; P = 0.009) at maximum external rotation; yet less superior shoulder force (F(1, 28) = 1.744; P = 0.005) and elbow compression (F(1, 28) = 4.331; P = 0.03), superior (F(1, 28) = 1.212; P = 0.002) and medial (F(1, 28) = 1.370; P = 0.03) elbow forces at ball release, when compared to a stationary position. Cricketers maintain similar upper limb kinematics between overhead throwing approaches. However, throwing with a run-up approximately doubles the forces exerted on the shoulder at maximum external rotation, which is most likely caused by the greater dominant hip and lumbo-pelvic flexion noted. This may amplify the potential risk for shoulder injury when throwing.HighlightsThrowing arm motion is similar irrespective of the approach used by cricketers to throw.Throwing with a run-up produced increased angles of lumbo-pelvic and dominant hip flexion in various phases of the throwing cycle.Throwing with a run-up resulted in greater shoulder compression and posterior force at maximum external rotation.


Assuntos
Beisebol , Articulação do Ombro , Humanos , Fenômenos Biomecânicos , Ombro , Cotovelo , Extremidade Superior
7.
IEEE Robot Autom Lett ; 7(3): 6155-6162, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051565

RESUMO

Mobility disabilities are prominent in society with wide-ranging deficits, motivating modular, partial-assist, lower-limb exoskeletons for this heterogeneous population. This paper introduces the Modular Backdrivable Lower-limb Unloading Exoskeleton (M-BLUE), which implements high torque, low mechanical impedance actuators on commercial orthoses with sheet metal modifications to produce a variety of hip- and/or knee-assisting configurations. Benchtop system identification verifies the desirable backdrive properties of the actuator, and allows for torque prediction within ±0.4 Nm. An able-bodied human subject experiment demonstrates that three unilateral configurations of M-BLUE (hip only, knee only, and hip-knee) with a simple gravity compensation controller can reduce muscle EMG readings in a lifting and lowering task relative to the bare condition. Reductions in mean muscular effort and peak muscle activation were seen across the primary squat musculature (excluding biceps femoris), demonstrating the potential to reduce fatigue leading to poor lifting posture. These promising results motivate applications of M-BLUE to additional populations, and the expansion of M-BLUE to bilateral and ankle configurations.

8.
J Biomech ; 126: 110658, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34358903

RESUMO

The development of GIRD is a well-documented adaptation associated with repetitive overhead throwing in numerous sports. In occurrence with total rotational range of motion deficit, GIRD is considered pathological and increases shoulder injury risk. While cricketers demonstrate these deficits in rotational range; the association between GIRD and overhead throwing has yet to be explored. Therefore, the aim of this study was to determine the relationship between GIRD and overhead throwing biomechanics in cricketers. Passive shoulder rotational range of motion was measured in 15 cricketers (elite = 8, amateur = 7). Kinetic and kinematic data were obtained during overhead throws from a stationary and run-up approach. Linear regression was used to determine potential relationships between GIRD and discrete shoulder kinetics for both throwing approaches. One-dimensional statistical parametric mapping regression was conducted to assess relationships between GIRD and throwing kinematics. When throwing overhead from a stationary position, GIRD was associated with reduced hip abduction during the preparatory arc (p = 0.002); superior shoulder (p = 0.003) and elbow compressive (p = 0.009) forces, at cocking. In addition, GIRD was associated with increased posterior shoulder force during arm deceleration for both stationary (p = 0.013) and run-up approaches (p = 0.03) to overhead throwing. Cricketers with GIRD utilise a shorter stride, creating early pelvic rotation and a slow throwing arm with an associated reduction in forces about the shoulder and elbow at cocking, when throwing from a stationary position. Further, overload of the posterior shoulder occurs during arm deceleration, irrespective of throwing approach. These findings highlight potential shoulder injury risk.


Assuntos
Articulação do Ombro , Fenômenos Biomecânicos , Cotovelo , Amplitude de Movimento Articular , Rotação , Ombro
9.
IEEE Int Conf Rehabil Robot ; 2019: 917-924, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374747

RESUMO

This paper presents the mechatronic design and initial validation of a partial-assist knee orthosis for individuals with musculoskeletal disorders, e.g., knee osteoarthritis and lower back pain. This orthosis utilizes a quasi-direct drive actuator with a low-ratio transmission (7:1) to greatly reduce the reflected inertia for high backdrivability. To provide meaningful assistance, a custom Brushless DC (BLDC) motor is designed with encapsulated windings to improve the motor's thermal environment and thus its continuous torque output. The 2.69 kg orthosis is constructed from all custom-made components with a high package factor for lighter weight and a more compact size. The combination of compactness, backdrivability, and torque output enables the orthosis to provide partial assistance without obstructing the natural movement of the user. Several benchtop tests verify the actuator's capabilities, and a human subject experiment demonstrates reduced quadriceps muscle activation when assisted during a repetitive lifting and lowering task.


Assuntos
Joelho/fisiologia , Aparelhos Ortopédicos , Desenho de Prótese , Eletromiografia , Humanos , Campos Magnéticos , Masculino , Temperatura , Torque
10.
IEEE Access ; 7: 109840-109855, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31656719

RESUMO

Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhythmic (constant-speed) walking, transitions between speeds and/or tasks, and some common volitional leg motions. We introduce a new piecewise holonomic phase variable, which, through a finite state machine, forms the basis of our controller. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact along with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of rhythmic and non-rhythmic tasks, including slow and fast walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. Use of the powered leg resulted in clinically significant reductions in amputee compensations for rhythmic tasks (including vaulting and hip circumduction) when compared to use of the take-home passive leg. In addition, considerable improvements were also observed in the performance for non-rhythmic tasks. The proposed approach is expected to provide a better understanding of rhythmic and non-rhythmic motions in a unified framework, which in turn can lead to more reliable control of multi-joint prostheses for a wider range of real-world tasks.

11.
Rep U S ; 2018: 2292-2298, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30746286

RESUMO

Although there has been recent progress in control of multi-joint prosthetic legs for periodic tasks such as walking, volitional control of these systems for non-periodic maneuvers is still an open problem. In this paper, we develop a new controller that is capable of both periodic walking and common volitional leg motions based on a piecewise holonomic phase variable through a finite state machine. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact together with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of periodic and non-periodic tasks, including low- and high-speed walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. The proposed approach is expected to provide better understanding of volitional motions and lead to more reliable control of multi-joint prostheses for a wider range of tasks.

12.
Gait Posture ; 58: 274-279, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28837918

RESUMO

The aim of this study was to utilise one-dimensional statistical parametric mapping to compare differences between biomechanical and electromyographical waveforms in runners when running in barefoot or shod conditions. Fifty habitually shod runners were assessed during overground running at their current 10-km race running speed. Electromyography, kinematics and ground reaction forces were collected during these running trials. Joint kinetics were calculated using inverse dynamics. One-dimensional statistical parametric mapping one sample t-test was conducted to assess differences over an entire gait cycle on the variables of interest when barefoot or shod (p<0.05). Only sagittal plane differences were found between barefoot and shod conditions at the knee during late stance (18-23% of the gait cycle) and swing phase (74-90%); at the ankle early stance (0-6%), mid-stance (28-38%) and swing phase (81-100%). Differences in sagittal plane moments were also found at the ankle during early stance (2, 4-5%) and knee during early stance (5-11%). Condition differences were also found in vertical ground reaction force during early stance between (3-10%). An acute bout of barefoot running in habitual shod runners invokes temporal differences throughout the gait cycle. Specifically, a co-ordinative responses between the knee and ankle joint in the sagittal plane with a delay in the impact transient peak; onset of the knee extension and ankle plantarflexion moment in the shod compared to barefoot condition was found. This appears to affect the delay in knee extension and ankle plantarflexion during late stance. This study provides a glimpse into the co-ordination of the lower limb when running in differing footwear.


Assuntos
Pé/fisiologia , Marcha/fisiologia , Corrida/fisiologia , Sapatos , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Articulação do Joelho/fisiologia , Masculino , Adulto Jovem
13.
Clin Neurophysiol ; 124(1): 136-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22959414

RESUMO

OBJECTIVE: To investigate the effects of neurophysiological, behavioural and perceptual differences between wrist flexion and extension movements, on their corticomuscular coherence (CMC) levels. METHODS: CMC was calculated between simultaneously recorded electroencephalography (EEG) and electromyography (EMG) measures from fifteen healthy subjects who performed 10 repetitions of alternating isometric wrist flexion and extension tasks at 15% of their maximum voluntary contraction (MVC) torque levels. Task precision was calculated from torque recordings. Subjects rated the perceived difficulty levels for both tasks. RESULTS: Flexors had significantly lower; peak beta CMC, peak frequency, frequency width, normalised EMG beta power, torque fluctuation (<5 Hz and beta band) and perceived difficulty ratings; but higher MVC and precision compared to extensors. EEG alpha and beta powers were non-different between flexion and extension. CONCLUSIONS: An inverse relationship between CMC and motor precision was found in our inter-muscle study, contrary to the direct relationship found in a prior intra-muscle study. Functional suitability, long term usage adaptation and lower perceived difficulty of wrist flexion may explain the results. SIGNIFICANCE: We extend the CMC literature to include the clinically different, antagonistic wrist flexors and extensors and add to the debate relating CMC and motor precision by positing the confounding effect of perceived difficulty.


Assuntos
Comportamento/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Percepção/fisiologia , Punho/fisiologia , Adulto , Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia , Eletromiografia , Eletroculografia , Fenômenos Eletrofisiológicos , Antebraço/fisiologia , Humanos , Contração Isométrica/fisiologia , Masculino , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA