Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(Suppl 1): 189, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297949

RESUMO

BACKGROUND: Identifying one or more biologically-active/native decoys from millions of non-native decoys is one of the major challenges in computational structural biology. The extreme lack of balance in positive and negative samples (native and non-native decoys) in a decoy set makes the problem even more complicated. Consensus methods show varied success in handling the challenge of decoy selection despite some issues associated with clustering large decoy sets and decoy sets that do not show much structural similarity. Recent investigations into energy landscape-based decoy selection approaches show promises. However, lack of generalization over varied test cases remains a bottleneck for these methods. RESULTS: We propose a novel decoy selection method, ML-Select, a machine learning framework that exploits the energy landscape associated with the structure space probed through a template-free decoy generation. The proposed method outperforms both clustering and energy ranking-based methods, all the while consistently offering better performance on varied test-cases. Moreover, ML-Select shows promising results even for the decoy sets consisting of mostly low-quality decoys. CONCLUSIONS: ML-Select is a useful method for decoy selection. This work suggests further research in finding more effective ways to adopt machine learning frameworks in achieving robust performance for decoy selection in template-free protein structure prediction.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Análise por Conglomerados , Aprendizado de Máquina , Conformação Proteica , Dobramento de Proteína , Termodinâmica
2.
J Chem Phys ; 144(23): 234101, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334148

RESUMO

We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38179578

RESUMO

Quantum annealing is a specialized type of quantum computation that aims to use quantum fluctuations in order to obtain global minimum solutions of combinatorial optimization problems. Programmable D-Wave quantum annealers are available as cloud computing resources, which allow users low-level access to quantum annealing control features. In this article, we are interested in improving the quality of the solutions returned by a quantum annealer by encoding an initial state into the annealing process. We explore twoD-Wave features that allow one toencode such an initialstate: the reverse annealing (RA) and theh-gain(HG)features.RAaimstorefineaknownsolutionfollowinganannealpathstartingwithaclassical state representing a good solution, going backward to a point where a transverse field is present, and then finishing the annealing process with a forward anneal. The HG feature allows one to put a time-dependent weighting scheme on linear (h) biases of the Hamiltonian, and we demonstrate that this feature likewise can be used to bias the annealing to start from an initial state. We also consider a hybrid method consisting of a backward phase resembling RA and a forward phase using the HG initial state encoding. Importantly, we investigate the idea of iteratively applying RA and HG to a problem, with the goal of monotonically improving on an initial state that is not optimal. The HG encoding technique is evaluated on a variety of input problems including the edge-weighted maximum cut problem and the vertex-weighted maximum clique problem, demonstrating that the HG technique is a viable alternative to RA for some problems. We also investigate how the iterative procedures perform for both RA and HG initial state encodings on random whole-chip spin glasses with the native hardware connectivity of the D-Wave Chimera and Pegasus chips.

4.
Sci Rep ; 12(1): 4499, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296721

RESUMO

Quantum annealers of D-Wave Systems, Inc., offer an efficient way to compute high quality solutions of NP-hard problems. This is done by mapping a problem onto the physical qubits of the quantum chip, from which a solution is obtained after quantum annealing. However, since the connectivity of the physical qubits on the chip is limited, a minor embedding of the problem structure onto the chip is required. In this process, and especially for smaller problems, many qubits will stay unused. We propose a novel method, called parallel quantum annealing, to make better use of available qubits, wherein either the same or several independent problems are solved in the same annealing cycle of a quantum annealer, assuming enough physical qubits are available to embed more than one problem. Although the individual solution quality may be slightly decreased when solving several problems in parallel (as opposed to solving each problem separately), we demonstrate that our method may give dramatic speed-ups in terms of the Time-To-Solution (TTS) metric for solving instances of the Maximum Clique problem when compared to solving each problem sequentially on the quantum annealer. Additionally, we show that solving a single Maximum Clique problem using parallel quantum annealing reduces the TTS significantly.

5.
Sci Rep ; 12(1): 8539, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595786

RESUMO

Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., [Formula: see text]) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor's with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.

6.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1670-1682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33400654

RESUMO

A central challenge in protein modeling research and protein structure prediction in particular is known as decoy selection. The problem refers to selecting biologically-active/native tertiary structures among a multitude of physically-realistic structures generated by template-free protein structure prediction methods. Research on decoy selection is active. Clustering-based methods are popular, but they fail to identify good/near-native decoys on datasets where near-native decoys are severely under-sampled by a protein structure prediction method. Reasonable progress is reported by methods that additionally take into account the internal energy of a structure and employ it to identify basins in the energy landscape organizing the multitude of decoys. These methods, however, incur significant time costs for extracting basins from the landscape. In this paper, we propose a novel decoy selection method based on non-negative matrix factorization. We demonstrate that our method outperforms energy landscape-based methods. In particular, the proposed method addresses both the time cost issue and the challenge of identifying good decoys in a sparse dataset, successfully recognizing near-native decoys for both easy and hard protein targets.


Assuntos
Algoritmos , Proteínas , Análise por Conglomerados , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Proteínas/genética
7.
J Bioinform Comput Biol ; 17(3): 1950014, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31288643

RESUMO

This paper focuses on the last two stages of genome assembly, namely, scaffolding and gap-filling, and shows that they can be solved as part of a single optimization problem. Our approach is based on modeling genome assembly as a problem of finding a simple path in a specific graph that satisfies as many distance constraints as possible encoding the insert-size information. We formulate it as a mixed-integer linear programming (MILP) problem and apply an optimization solver to find the exact solutions on a benchmark of chloroplasts. We show that the presence of repetitions in the set of unitigs is the main reason for the existence of multiple equivalent solutions that are associated to alternative subpaths. We also describe two sufficient conditions and we design efficient algorithms for identifying these subpaths. Comparisons of the results achieved by our tool with the ones obtained with recent assemblers are presented.


Assuntos
Algoritmos , Genoma de Cloroplastos , Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Modelos Genéticos
8.
Biomolecules ; 9(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615116

RESUMO

The energy landscape that organizes microstates of a molecular system and governs theunderlying molecular dynamics exposes the relationship between molecular form/structure, changesto form, and biological activity or function in the cell. However, several challenges stand in the wayof leveraging energy landscapes for relating structure and structural dynamics to function. Energylandscapes are high-dimensional, multi-modal, and often overly-rugged. Deep wells or basins inthem do not always correspond to stable structural states but are instead the result of inherentinaccuracies in semi-empirical molecular energy functions. Due to these challenges, energeticsis typically ignored in computational approaches addressing long-standing central questions incomputational biology, such as protein decoy selection. In the latter, the goal is to determine over apossibly large number of computationally-generated three-dimensional structures of a protein thosestructures that are biologically-active/native. In recent work, we have recast our attention on theprotein energy landscape and its role in helping us to advance decoy selection. Here, we summarizesome of our successes so far in this direction via unsupervised learning. More importantly, we furtheradvance the argument that the energy landscape holds valuable information to aid and advance thestate of protein decoy selection via novel machine learning methodologies that leverage supervisedlearning. Our focus in this article is on decoy selection for the purpose of a rigorous, quantitativeevaluation of how leveraging protein energy landscapes advances an important problem in proteinmodeling. However, the ideas and concepts presented here are generally useful to make discoveriesin studies aiming to relate molecular structure and structural dynamics to function.


Assuntos
Proteínas/química , Aprendizado de Máquina Supervisionado , Termodinâmica , Bases de Dados de Proteínas , Conformação Proteica , Proteínas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA