Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364256

RESUMO

Quercetin (Qu) is a dietary antioxidant and a member of flavonoids in the plant polyphenol family. Qu has a high ability to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) molecules; hence, exhibiting beneficial effects in preventing obesity, diabetes, cancer, cardiovascular diseases, and inflammation. However, quercetin has low bioavailability due to poor water solubility, low absorption, and rapid excretion from the body. To address these issues, the usage of Qu nanosuspensions can improve physical stability, solubility, and pharmacokinetics. Therefore, we developed a Qu and polyethylene glycol nanosuspension (Qu-PEG NS) and confirmed its interaction by Fourier transform infrared analysis. Qu-PEG NS did not show cytotoxicity to HaCaT and RAW 264.7 cells. Furthermore, Qu-PEG NS effectively reduced the nitrogen oxide (NO) production in lipopolysaccharide (LPS)-induced inflammatory RAW 264.7 cells. Additionally, Qu-PEG NS effectively lowered the levels of COX-2, NF-κB p65, and IL-1ß in the LPS-induced inflammatory RAW 264.7 cells. Specifically, Qu-PEG NS exhibited anti-inflammatory properties by scavenging the ROS and RNS and mediated the inhibition of NF-κB signaling pathways. In addition, Qu-PEG NS had a high antioxidant effect and antibacterial activity against Escherichia coli and Bacillus cereus. Therefore, the developed novel nanosuspension showed comparable antioxidant, anti-inflammatory, and antibacterial functions and may also improve solubility and physical stability compared to raw quercetin.


Assuntos
Lipopolissacarídeos , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Quercetina/metabolismo , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , NF-kappa B/metabolismo , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Macrófagos , Células RAW 264.7 , Antibacterianos/farmacologia
2.
Appl Biochem Biotechnol ; 195(5): 3027-3046, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36495375

RESUMO

The biological activities of Houttuynia cordata (H. cordata) fermented with Aureobasidium pullulans (A. pullulans) was investigated for human skin keratinocyte-induced chemical and photo oxidations. In this research, H2O2/UVA-induced HaCaT cell lines were treated with H. cordata water/ethanol extracts (HCW/HCE) and fermented with A. pullulans water/ethanol extracts (HCFW/HCFE). A. pullulans fermented with H. cordata (HCFW) increased in 5.4-folds of total polyphenol (HCFW 46.89 mg GAE/extract g), and 2.3-folds in flavonoids (HCFW 53.80 mg GAE/extract g) compared with water extracts of H. cordata (HCW). Further, no significant cytotoxicity for HaCaT cells showed by all the extracts of H. cordata fermented with A. pullulans. HCFW extracts have significantly lowered inflammation factors such as COX-2 and Hsp70 proteins in oxidative stressed HaCaT cells induced by H2O2 and UVA treatments. All H. cordata extracts significantly downregulated gene expression involved in oxidative stress and inflammation factors, including IL-1ß, IL-6, COX-2, TNF-α, NF-κB, and MMP-1 in the H2O2/UVA-treated HaCaT cells. However, keratin-1 gene expression in the UVA-treated HaCaT cells was increased in twofolds by HCFW extracts. Further, A. pullulans fermented H. cordata extracts (HCFW/HCFE) reduced the genes involved in oxidative stresses more effectively than those of H. cordata extract only. Overall, the polyphenol-rich extracts of H. cordata fermented with A. pullulans showed synergistic protective effects for human epidermal keratinocytes to prevent photoaging and intrinsic aging by anti-oxidation and anti-inflammatory functions.


Assuntos
Houttuynia , Humanos , Peróxido de Hidrogênio/toxicidade , Ciclo-Oxigenase 2 , Estresse Oxidativo , Queratinócitos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Inflamação , Água/farmacologia , Etanol
3.
Plant Cell Rep ; 31(4): 621-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22083649

RESUMO

BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.


Assuntos
Cromossomos de Plantas/genética , Tamanho do Genoma/genética , Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Asparagus/genética , Cromossomos Artificiais Bacterianos , Biblioteca Genômica , Hibridização in Situ Fluorescente , Lycoris/genética , Cebolas/genética , Oryza/genética , Triticum/genética
4.
J Plant Physiol ; 279: 153837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279633

RESUMO

The failure of midrib formation in rice leaf blades results in the drooping leaf (dl) phenotype. A normal DROOPING LEAF (DL) gene is necessary for leaf homeotic transformation, which affects midrib and pistil development. Genetic analysis was performed on a new drooping leaf (dl) mutant named dl-6 in rice. The dl-6 allelic mutant exhibited drooping leaves that were severely folded and twisted at the base but had normal flower structure. The dl-6 allele is a nuclear recessive trait that fits a 3:1 Mendelian segregation ratio. The dl-6 mutant leaves displayed an abnormal main vein (midrib-less) with undeveloped aerenchyma and vascular bundles, resulting in severe leaf drooping. The lack of a midrib in dl-6 caused weak mechanical support, which resulted in folding at the collar junction of the leaf base and downward bending. Through genetic mapping, the dl-6 allele was identified at approximately 28.2 cM on rice chromosome 3. The allele was caused by mutations within the DL (LOC_Os03g11600.1) gene, with specific amino acid substitutions and additions in the encoded protein of the YABBY transcription factor. The dl-6 mutant is a recessive allele encoding a dysfunctional YABBY transcription factor that regulates leaf midrib development and aerenchymatous clear cell structures, leading to a drooping leaf phenotype in rice.


Assuntos
Oryza , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Fatores de Transcrição/metabolismo , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fenótipo
5.
Gene ; 325: 17-24, 2004 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-14697506

RESUMO

Alliinase operates in the biochemical pathway that produces the compounds responsible for the characteristic flavor of onion. We isolated and characterized the 86-kb BAC clone containing a novel onion alliinase gene, ALL1. Identity of deduced amino acid sequence of ALL1 with a bulb alliinase is 65.4% and with a root alliinase is 67.3%. The ALL1 gene is expressed specifically in onion roots and estimated pI value of mature ALL1 protein is similar to that of root alliinase isoform I, which is an uncharacterized protein having alliinase activity. The highly repetitive sequences around the ALL1 gene was observed from sequence and DNA gel blot analyses. The 33.2% G+C content of the 35-kb ALL1 region is similar to that of dicot plants and lower than that of monocot cereal plants, although onion is classified into monocots. The present study shows the first evidence of the onion genomic sequences around genes differed from the cereal genome.


Assuntos
Liases de Carbono-Enxofre/genética , DNA de Plantas/genética , Genes de Plantas/genética , Cebolas/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , Éxons , Íntrons , Dados de Sequência Molecular , Cebolas/enzimologia , Filogenia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
6.
Genome ; 45(1): 157-64, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11908658

RESUMO

Two rye genome-specific random amplified polymorphic DNA (RAPD) markers were identified for detection of rye introgression in wheat. Both markers were amplified in all of the tested materials that contained rye chromatin such as rye, hexaploid triticale, wheat-rye addition lines, and wheat varieties with 1BL.1RS translocation. Two cloned markers, designated pSc10C and pSc20H, were 1012 bp and 1494 bp, respectively. Sequence analysis showed that both pSc10C and pSc20H fragments were related to retrotransposons, ubiquitously distributed in plant genomes. Using fluorescence in situ hybridization (FISH), probe pSc10C was shown to hybridize predominantly to the pericentromeric regions of all rye chromosomes, whereas probe pSc20H was dispersed throughout the rye genome except at telomeric regions and nucleolar organizing regions. The FISH patterns showed that the two markers should be useful to select or track all wheat-rye translocation lines derived from the whole arms of rye chromosomes, as well as to characterize the positions of the translocation breakpoints generated in the proximal and distal regions of rye arms.


Assuntos
Técnica de Amplificação ao Acaso de DNA Polimórfico , Secale/genética , Triticum/genética , Sequência de Bases , Marcadores Genéticos , Genoma de Planta , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA