Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(10): 1402-1410, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39198713

RESUMO

Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging. Herein we prepared a class of semiconducting III-V-derived van der Waals crystals, specifically the HxA1-xBX form, exhibiting memristive characteristics. To identify candidates for the material synthesis, we conducted a systematic high-throughput screening, leading us to 44 prospective III-V candidates; of these, we successfully synthesized ten, including nitrides, phosphides, arsenides and antimonides. These materials exhibited intriguing characteristics such as electrochemical polarization and memristive phenomena while retaining their semiconductive attributes. We demonstrated the gate-tunable synaptic and logic functions within single-gate memtransistors, capitalizing on the synergistic interplay between the semiconducting and memristive properties of our two-dimensional crystals. Our approach guides the discovery of van der Waals materials with unique properties from unconventional crystal symmetries.

2.
Nano Lett ; 21(12): 5345-5352, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34097829

RESUMO

The quest for safe and high-performance Li ion batteries (LIBs) motivates intense efforts seeking a high-energy but reliable anode, cathode, and nonflammable electrolyte. For any of these, exploring new electrochemistry methods that enhance safety and performance by employing well-designed electrodes and electrolytes are required. Electrolyte wetting, governed by thermodynamics, is another critical issue in increasing Li ion transport through the separator. Herein, we report an approach to enhancing LIB performance by applying mechanical resonant vibration to increase electrolyte wettability on the separator. Wetting is activated at a resonant frequency with a capillary wave along the surface of the electrolyte, allowing the electrolyte to infiltrate into the porous separator by inertia force. This mechanical resonance, rather than electrochemistry, leads to the high specific capacity, rate capability, and cycling stability of LIBs. The concept of the mechanical approach is a promising yet simple strategy for the development of safer LIBs using liquid electrolytes.

3.
Nano Lett ; 21(2): 1132-1140, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33439663

RESUMO

Ideal electromagnetic (EM) wave absorbers can absorb all incident EM waves, regardless of the incident direction, polarization, and frequency. Absorptance and reflectance are intrinsic material properties strongly correlated with electrical conductivity; hence, achieving perfect absorptance with zero reflectance is challenging. Herein, we present a design strategy for preparing a nearly ideal EM absorber based on a layered metal that maximizes absorption by utilizing multiple internal reflections and minimizes reflection using a monotonic gradient of intrinsic impedance. This approach was experimentally verified using aluminum nanoflakes prepared via topochemical etching of lithium from Li9Al4, and the impedance-graded structure was obtained through the size-based sorting behavior of aluminum nanoflakes sinking in dispersion. Unlike in traditional shielding materials, strong absorption (26.76 dB) and negligible reflectivity (0.04 dB) with a ratio of >103 can be achieved in a 120 µm thick film. Overall, our findings exhibit potential for developing a novel class of antireflective shielding materials.

4.
Adv Mater ; 35(42): e2305697, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37616471

RESUMO

A crossbar array is an essential element that determines the operating position and simplifies the structure of devices. However, in the crossbar array, wiring numerous electrodes to address many positions poses significant challenges. In this study, a method is proposed that utilizes only two electrodes to determine multiple positions. The method significantly simplifies the wiring and device fabrication process. Instead of defining the node location of the crossbar, it is experimentally demonstrated that the x-y-z coordinates can be determined from i) the resistance change as a function of distance, ii) the resistance variation influenced by the electrode composition, and iii) capacitance fluctuation resulting from changes in the dielectric thickness. By employing two-terminal transparent electrodes, a fully functional 3D touch device is successfully fabricated, introducing a groundbreaking approach to simplify input device architectures.

5.
Nat Commun ; 13(1): 1438, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301324

RESUMO

Scanning probe microscopy techniques, such as atomic force microscopy and scanning tunnelling microscopy, are harnessed to image nanoscale structures with an exquisite resolution, which has been of significant value in a variety of areas of nanotechnology. These scanning probe techniques, however, are not generally suitable for high-throughput imaging, which has, from the outset, been a primary challenge. Traditional approaches to increasing the scalability have involved developing multiple probes for imaging, but complex probe design and electronics are required to carry out the detection method. Here, we report a probe-based imaging method that utilizes scalable cantilever-free elastomeric probe design and hierarchical measurement architecture, which readily reconstructs high-resolution and high-throughput topography images. In a single scan, we demonstrate imaging with a 100-tip array to obtain 100 images over a 1-mm2 area with 106 pixels in less than 10 min. The potential for large-scale tip integration and the advantage of a simple probe array suggest substantial promise for our approach to high-throughput imaging far beyond what is currently possible.


Assuntos
Microscopia de Varredura por Sonda , Nanotecnologia , Microscopia de Força Atômica/métodos , Microscopia de Varredura por Sonda/métodos , Microscopia de Tunelamento , Nanotecnologia/métodos , Proteínas
6.
RSC Adv ; 11(52): 32533-32540, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35493568

RESUMO

With a growing concern over climate change, hydrogen offers a wide range of opportunities for decarbonization and provides a flexibility in overall energy systems. While hydrogen energy is already plugged into industrial sectors, a physical hydrogen storage system poses a formidable challenge, giving momentum for safe and efficient solid-state hydrogen storage. Accommodating such demands, sodium alanate (NaAlH4) has been considered one of the candidate materials due to its high storage capacity. However, it requires a high temperature for hydrogen desorption and becomes inactive irreversibly upon air-exposure. To enhance sluggish reaction kinetics and reduce the hydrogen desorption temperature, NaAlH4 can be confined into a porous nanoscaffold; however, nanoconfined NaAlH4 with sufficient hydrogen storage performance and competent stability has not been demonstrated so far. In this work, we demonstrate a simultaneously enhanced hydrogen storage performance and air-stability for NaAlH4 particles confined in a nanoporous graphene oxide framework (GOF). The structure of the GOF was elaborately optimized as a nanoscaffold, and NaAlH4 was infiltrated into the pores of the GOF via incipient wetness impregnation. As a result of the nanoconfinement, both the onset temperature and activation energy for hydrogen desorption of NaAlH4 are significantly decreased without transition metal catalysts, while simultaneously achieving the stability under ambient conditions.

7.
Adv Mater ; 33(47): e2006043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34013602

RESUMO

The designing of novel materials is a fascinating and innovative pathway in materials science. Particularly, novel layered compounds have tremendous influence in various research fields. Advanced fundamental studies covering various aspects, including reactants and synthetic methods, are required to obtain novel layered materials with unique physical and chemical properties. Among the promising synthetic techniques, topochemical approaches have afforded the platform for widening the extent of novel 2D materials. Notably, the synthesis of binary layered materials is considered as a major scientific breakthrough after the synthesis of graphene as they exhibit a wide spectrum of material properties with varied potential applicability. In this review, a comprehensive overview of the progress in the development of metastable layered compounds is presented. The various metastable layered compounds synthesized from layered ternary bulk materials through topochemical approaches are listed, followed by the descriptions of their mechanisms, structural analyses, characterizations, and potential applications. Finally, an essential research direction concerning the synthesis of new materials is indicated, wherein the possible application of topochemical approaches in unprecedented areas is explored.

8.
ACS Appl Mater Interfaces ; 12(9): 10852-10857, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024362

RESUMO

In this study, the orientation of block copolymer (BCP) patterns in topographical templates is controlled using a simple template design rule. The orientation of the pattern is selected by using a template with one commensurate dimension and one incommensurate dimension. An array of binary states of a BCP pattern can be programmed into a desired layout by tuning of the template wall thickness.

9.
Nano Converg ; 5(1): 25, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30467681

RESUMO

In this work, ladder-shaped block copolymer structures consisting of parallel bars, bends, and T-junctions are formed inside square confinement. We define binary states by the two degenerate alignment orientations, and study properties of the two-state system. We control the binary states by creating openings around the confinement, changing the confinement geometry, or placing lithographic guiding patterns inside the confinement. Self-consistent field theory simulations show templating effect from the wall openings and reproduce the experimental results. We demonstrate scaling of a single binary state into a larger binary state array with individual binary state control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA