Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012363

RESUMO

Crystalline metal-organic frameworks (MOFs) are extensively used in areas such as gas storage and small-molecule drug delivery. Although Cu-BTC (1, MOF-199, BTC: benzene-1,3,5-tricarboxylate) has versatile applications, its NO storage and release characteristics are not amenable to therapeutic usage. In this work, micro-sized Cu-BTC was prepared solvothermally and then processed by ball-milling to prepare nano-sized Cu-BTC (2). The NO storage and release properties of the micro- and nano-sized Cu-BTC MOFs were morphology dependent. Control of the hydration degree and morphology of the NO delivery vehicle improved the NO release characteristics significantly. In particular, the nano-sized NO-loaded Cu-BTC (NO⊂nano-Cu-BTC, 4) released NO at 1.81 µmol·mg-1 in 1.2 h in PBS, which meets the requirements for clinical usage. The solid-state structural formula of NO⊂Cu-BTC was successfully determined to be [CuC6H2O5]·(NO)0.167 through single-crystal X-ray diffraction, suggesting no structural changes in Cu-BTC upon the intercalation of 0.167 equivalents of NO within the pores of Cu-BTC after NO loading. The structure of Cu-BTC was also stably maintained after NO release. NO⊂Cu-BTC exhibited significant antibacterial activity against six bacterial strains, including Gram-negative and positive bacteria. NO⊂Cu-BTC could be utilized as a hybrid NO donor to explore the synergistic effects of the known antibacterial properties of Cu-BTC.


Assuntos
Cobre , Óxido Nítrico , Antibacterianos/farmacologia , Benzeno , Cobre/química , Ácidos Tricarboxílicos
2.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948419

RESUMO

Polyurethane foams (PUFs) have attracted attention as biomaterials because of their low adhesion to the wound area and suitability as biodegradable or bioactive materials. The composition of the building blocks for PUFs can be controlled with additives, which provide excellent anti-drug resistance and biocompatibility. Herein, nanosized Cu-BTC (copper(II)-benzene-1,3,5-tricarboxylate) was incorporated into a PUF via the crosslinking reaction of castor oil and chitosan with toluene-2,4-diisocyanate, to enhance therapeutic efficiency through the modification of the surface of PUF. The physical and thermal properties of the nanosized Cu-BTC-incorporated PUF (PUF@Cu-BTC), e.g., swelling ratio, phase transition, thermal gravity loss, and cell morphology, were compared with those of the control PUF. The bactericidal activities of PUF@Cu-BTC and control PUF were evaluated against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus. PUF@Cu-BTC exhibited selective and significant antibacterial activity toward the tested bacteria and lower cytotoxicity for mouse embryonic fibroblasts compared with the control PUF at a dose of 2 mg mL-1. The Cu(II) ions release test showed that PUF@Cu-BTC was stable in phosphate buffered saline (PBS) for 24 h. The selective bactericidal activity and low cytotoxicity of PUF@Cu-BTC ensure it is a candidate for therapeutic applications for the drug delivery, treatment of skin disease, and wound healing.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/química , Cobre/administração & dosagem , Estruturas Metalorgânicas/administração & dosagem , Poliuretanos/química , Antibacterianos/química , Antibacterianos/farmacologia , Cobre/química , Cobre/farmacologia , Portadores de Fármacos/química , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
3.
Int J Mol Sci ; 17(11)2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27869744

RESUMO

One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 µM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Óxidos N-Cíclicos/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Animais , Antineoplásicos/toxicidade , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Camundongos , Microscopia Confocal , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Marcadores de Spin
4.
J Phys Ther Sci ; 28(2): 460-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27065531

RESUMO

[Purpose] The purpose of this study was to examine the pressure-relieving effects of a continuous lateral turning device on common pressure ulcer sites. [Subjects] Twenty-four healthy adults participated. [Methods] The design of our continuous lateral turning device was motivated by the need for an adequate pressure-relieving device for immobile and/or elderly people. The procedure of manual repositioning is embodied in our continuous lateral turning device. The interface pressure and time were measured, and comfort grade was evaluated during sessions of continuous lateral turning at 0°, 15°, 30°, and 45°. We quantified the pressure-relieving effect using peak pressure, mean pressure, and pressure time integration. [Results] Participants demonstrated pressure time integration values below the pressure-time threshold at 15°, 30°, and 45° at all the common pressure ulcer sites. Moreover, the most effective angles for pressure relief at the common pressure ulcer sites were 30° at the occiput, 15° at the left scapula, 45° at the right scapula, 45° at the sacrum, 15° at the right heel, and 30° at the left heel. However, angles greater than 30° induced discomfort. [Conclusion] Continuous lateral turning with our specially designed device effectively relieved the pressure of targeted sites. Moreover, the suggested angles of continuous lateral turning can be used to relieve pressure at targeted sites.

5.
Int J Biol Macromol ; 264(Pt 2): 130617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447829

RESUMO

Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Gelatina/química , Materiais Biocompatíveis/química , Silício , Níquel , Microesferas , Hidrogéis/química , Antibacterianos/farmacologia , Metacrilatos/química , Engenharia Tecidual
6.
Asia Pac J Public Health ; : 10105395241278232, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252428

RESUMO

Eating behaviors, which are shaped during childhood, are one of the important factors influencing children's growth. This study aimed to investigate the variations in eating behaviors among Vietnamese preschool children aged 3 to 6 years using the Children Eating Behavior Questionnaire (CEBQ) and their association with anthropometric Z-scores. A cross-sectional study was conducted on 10 172 children from 36 to 72 months old, recruited from three different socioeconomic regions of Hanoi. Differentiation of eating behaviors between two sexes was observed across all age groups, but most obvious at 36 to 48 months of age. The subscales of emotional overeating (EOE), enjoyment of food (EF), and desire to drink (DD) were higher in 60- to 72-month age groups and vice versa for slowness in eating (SE) and emotional undereating (EUE) subscales. Analyses using the general linear model showed that CEBQ subscales were associated with anthropometric Z-scores in both girls and boys.

7.
Nanoscale Adv ; 5(19): 5165-5213, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767032

RESUMO

In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.

8.
J Mater Chem B ; 11(23): 5142-5150, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37248783

RESUMO

Silver nanoparticles (AgNPs) continue to be applied to agricultural and medical applications because of their antibacterial and antifungal effects. However, AgNPs are vulnerable to poisoning by oxidation or sulfidation, and unintentional toxicity can occur via leaching. Therefore, ensuring the stability of AgNPs for practical applications is considered an important requirement. In this study, we propose the solvothermal galvanic replacement of a Te nanorod (TeNR) template with a Ag precursor to manufacture highly stable and biocompatible Ag-Te nanoparticles (AgTeNPs). In addition to their high stability, AgTeNPs composed of Ag2Te-Ag4.53Te3 were evaluated as a nanotherapeutic agent enabled by their selective toxicity through metabolic degradation in breast cancer cells. It has been demonstrated that combinatorial treatment with hyperthermic cancer-cell ablation through photothermal conversion provides an effective cancer treatment in vitro and in vivo. The discovered new biocompatible Ag nanomaterials with innate anticancer effects are expected to be applied to various application fields.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Humanos , Prata/farmacologia , Oxirredução
9.
Int J Biol Macromol ; 242(Pt 1): 124840, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169053

RESUMO

Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4'-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.


Assuntos
Cobre , Estruturas Metalorgânicas , Animais , Camundongos , Cobre/química , Estruturas Metalorgânicas/farmacologia , Alginatos/química , Hidrogéis/química , Antifúngicos , Fibroblastos , Antibacterianos/farmacologia , Antibacterianos/química , Metais
10.
ACS Appl Mater Interfaces ; 15(3): 4559-4568, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633438

RESUMO

In this study, a sponge-like poly(vinylidene fluoride) (PVDF)/lithium chloride (LiCl) nanocomposite-entrenched interdigitated capacitive (IDC) sensor was developed for real-time humidity-sensing applications. Here, we demonstrated a sponge-like nanoporous structure ranging from 200 nm to 2 µm size holes, the PVDF/LiCl structure fabricated on an interdigitated capacitor (IDC) electrode functioning as a high-performance sensor because of the presence of ionized LiCl. The nanoporous PVDF/LiCl composite-based humidity sensor exhibited a high sensitivity of 12.6 nF/% relative humidity (RH), a linearity of 0.990, and a low hysteresis of 2.6% in the range of 25-95% RH. The composite film exhibited a response time of 17.7 s, a recovery time of 21 s, and an intensified increase of 8.02 nF/s (a decrease of 6.7 nF/s). The sensor designed demonstrates ultra-high sensing characteristics with 10 times higher sensitivity, i.e., 12.678.96 pF/%RH as compared to other polymer-based composite humidity sensors. Owing to the sensing performance and portability, the proposed nanoporous PVDF/LiCl composite-based IDC sensor is expected to be a promising platform for a wide range of humidity-sensing applications, including real-time breath monitoring and non-contact sensing.

11.
Pharmaceutics ; 14(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35214110

RESUMO

Effective penetration into cells, or binding to cell membranes is an essential property of an effective nanoparticle drug delivery system (DDS). Nanoparticles are generally internalized through active transport mechanisms such as apoptosis, and cargo can be released directly into the cytoplasm. A metal-organic framework (MOF) is a network structure consisting of metal clusters connected by organic linkers with high porosity; MOFs provide a desirable combination of structural features that can be adjusted with large cargo payloads, along with Cu, Co, and Zn-MOFs, which have the chemical stability required for water-soluble use. Bioactive MOFs containing copper, cobalt, and zinc were prepared by modifying previous methods as therapeutic drugs. Their structures were characterized via PXRD, single-crystal crystallographic analysis, and FT-IR. The degradability of MOFs was measured in media such as deionized water or DPBS by PXRD, SEM, and ICP-MS. Furthermore, we investigated the anticancer activity of MOFs against the cell lines SKOV3, U87MG, and LN229, as well as their biocompatibility with normal fibroblast cells. The results show that a nanoporous 3D Cu-MOF could potentially be a promising candidate for chemoprevention and chemotherapy.

12.
Pharmaceutics ; 14(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145635

RESUMO

Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.

13.
Pharmaceutics ; 14(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35214001

RESUMO

Compared to most of nano-sized particles, core-shell-structured nanoflowers have received great attention as bioactive materials because of their high surface area with the flower-like structures. In this study, core-shell-structured Si-based NiO nanoflowers, Si@NiO, were prepared by a modified chemical bath deposition method followed by thermal reduction. The crystal morphology and basic structure of the composites were characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and porosity analysis (BJT), and inductively coupled plasma optical emission spectrometry (ICP-OES). The electrochemical properties of the Si@NiO nanoflowers were examined through the redox reaction of ascorbic acid with the metal ions present on the surface of the core-shell nanoflowers. This reaction favored the formation of reactive oxygen species. The Si@NiO nanoflowers showed excellent anticancer activity and low cytotoxicity toward the human breast cancer cell line (MCF-7) and mouse embryonic fibroblasts (MEFs), respectively, demonstrating that the anticancer activities of the Si@NiO nanoflowers were primarily derived from the oxidative capacity of the metal ions on the surface, rather than from the released metal ions. Thus, this proves that Si-based NiO nanoflowers can act as a promising candidate for therapeutic applications.

14.
Int J Biol Macromol ; 208: 149-158, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35304194

RESUMO

Bacterial infections have become a severe threat to human health and antibiotics have been developed to treat them. However, extensive use of antibiotics has led to multidrug-resistant bacteria and reduction of their therapeutic effects. An efficient solution may be localized application of antibiotics using a drug delivery system. For clinical application, they need to be biodegradable and should offer a prolonged antibacterial effect. In this study, a new injectable and visible-light-crosslinked hyaluronic acid (HA) hydrogel loaded with silicon (Si)-based nickel oxide (NiO) nanoflowers (Si@NiO) as an antibacterial scaffold was developed. Si@NiO nanoflowers were synthesized using chemical bath deposition before encapsulating them in the HA hydrogel under a mild visible-light-crosslinking conditions to generate a Si@NiO-hydrogel. Si@NiO synthesis was confirmed using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. As-prepared Si@NiO-hydrogel exhibited enhanced mechanical properties compared to a control bare hydrogel sample. Moreover, Si@NiO-hydrogel exhibits excellent antibacterial properties against three bacterial strains (P. aeruginosa, K. pneumoniae, and methicillin-resistant Staphylococcus aureus (>99.9% bactericidal rate)) and negligible cytotoxicity toward mouse embryonic fibroblasts. Therefore, Si@NiO-hydrogel has the potential for use in tissue engineering and biomedical applications owing to its injectability, visible-light crosslink ability, degradability, biosafety, and superior antibacterial property.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Fibroblastos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Luz , Camundongos , Níquel , Pseudomonas aeruginosa , Silício , Dióxido de Silício
15.
ACS Appl Bio Mater ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36041482

RESUMO

Metal-organic frameworks (MOFs) are potential exogenous scaffolds for therapeutic nitric oxide (NO) delivery because they can store drug or bioactive gas molecules within pores or on active metal sites. Herein, we employed a Cu-MOF coordinated with glutarate (glu) and 1,2-bis(4-pyridyl)ethane (bpa) to obtain NO-loaded Cu-MOF (NO⊂Cu-MOF). NO loading transformed the space group of Cu-MOF from monoclinic C2/c to triclinic P-1 through nonclassical hydrogen bonding with glu and bpa. Cu-MOF showed good stability in deionized water and phosphate-buffered saline. NO⊂Cu-MOF released up to 1.10 µmol mg-1 NO over 14.6 h at 37 °C, which is suitable for therapeutic applications. NO⊂Cu-MOF showed moderate biocompatibility with L-929 cells and significant anticancer activity against HeLa cells, suggesting an apoptosis-mediated cell death mechanism. These insights into NO bonding modes with Cu-MOF that enable controlled NO release can inspire the design of functional MOFs as hybrid NO donors for drug delivery.

16.
Front Public Health ; 10: 973362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159240

RESUMO

Background: Tuberculosis has caused significant public health and economic burdens in Vietnam over the years. The Vietnam National Tuberculosis Program is facing considerable challenges in its goal to eliminate tuberculosis by 2030, with the COVID-19 pandemic having negatively impacted routine tuberculosis services at all administrative levels. While the turnaround time of tuberculosis infection may delay disease detection, high transportation frequency could potentially mislead epidemiological studies. This study was conducted to develop an online geospatial platform to support healthcare workers in performing data visualization and promoting the active case surveillance in community as well as predicting the TB incidence in space and time. Method: This geospatial platform was developed using tuberculosis notification data managed by The Vietnam National Tuberculosis Program. The platform allows case distribution to be visualized by administrative level and time. Users can retrieve epidemiological measurements from the platform, which are calculated and visualized both temporally and spatially. The prediction model was developed to predict the TB incidence in space and time. Results: An online geospatial platform was developed, which presented the prediction model providing estimates of case detection. There were 400,370 TB cases with bacterial evidence to be included in the study. We estimated that the prevalence of TB in Vietnam was at 414.67 cases per 100.000 population. Ha Noi, Da Nang, and Ho Chi Minh City were predicted as three likely epidemiological hotspots in the near future. Conclusion: Our findings indicate that increased efforts should be undertaken to control tuberculosis transmission in these hotspots.


Assuntos
COVID-19 , Tuberculose , COVID-19/epidemiologia , Cidades , Humanos , Incidência , Pandemias , Tuberculose/diagnóstico , Tuberculose/epidemiologia
17.
J Nanosci Nanotechnol ; 11(1): 755-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446539

RESUMO

This article reports the effects of nanometer surface roughness on the magnetic properties of CoFeHfO thin films, as deposited on Si (100) substrates. The surface roughness was controlled via the working pressure during the sputtering time. When the working pressure increases from 0.5 to 3 mT, the surface roughness (R) of CoFeHfO thin films, formed by islands with the average high R, increases from 0.25 nm to 4.66 nm, respectively. At surface roughness (R) = 4.66 nm, coercivity (H(c)) reaches the highest value of 0.42 Oe and magnetic anisotropy (H(k)) drops to the lowest value of 33 Oe. This suggests that the quality of the soft magnetic properties of thin film decrease due to the increase in surface roughness. However, at very low working pressure, thin films become a homogeneous structure which also exhibits poor soft magnetic properties. The optimum value, with H(c) of 0.10 Oe and H(k) of 50 Oe, were obtained at 1.5 mT of working pressure. The model of the roughness effect on the magnetic properties is introduced and discussed.

18.
Front Surg ; 8: 693562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195225

RESUMO

Background: Little is known about video-assisted thoracoscopic surgery in the Nuss procedure (VATS-NUSS) and its postoperative outcomes in the resource-scarce conditions in clinical practice such as Vietnam. Available evidence in the literature was mostly reported from large institutions in developed countries. Hence, this study was conducted to review our initial large single-center experience in the use of the VATS-NUSS for patients with pectus excavatum (PE) within 5 years. Methods: Data from 365 consecutive PE patients between January 2015 and December 2019 who were surgically treated with VATS-NUSS were retrospectively analyzed. Results: Of 365 patients, median age at operation was 15.61 ± 3.73 years (range = 5-27 years), most being child and adolescent. Three hundred nine patients (84.65%) were male. PE was commonly detected at puberty (n = 328, 89.9%). Postoperatively, early complications consisted of pneumothorax (n = 5, 1.37%), pleural bleeding/pleural fluid (n = 2, 0.55%), pleural hematoma (n = 1, 0.27%), pneumonia (n = 1, 0.27%), surgical wound infection (n = 1, 0.27%), incision fluid accumulation (n = 3, 0.82%), metal bar infection (n = 1, 0.27%), atelectasis (n = 3, 0.82%), and fever (n = 8, 2.19%). Late complications included surgical wound infection (n = 2, 0.55%), metal bar deviation (n = 5, 1.37%), metal bar allergy (n = 10, 2.74%), recurrent PE (n = 2, 0.55%), and persistent PE (n = 5, 1.37%). No deaths occurred. In 175 patients (47.95%) experiencing bar removal, mean operative time for bar removal was 34.09 ± 10.61 min, and the length of hospitalization following bar removal was 2.4 ± 1.34 days; the most frequent complication was pneumothorax (n = 19, 10.85%). One wound infection and one incision fluid accumulation happened following bar removal. Favorable midterm to long-term postoperative outcomes were achieved. Conclusions: From the beginning of the Vietnamese surgeons' experience, VATS-NUSS application obtained favorable outcomes with minimizing the occurrence of serious intraoperative and postoperative complications. Current rare evidence enables to give a real picture in the application, modification, and development of VATS-NUSS in the countries having similar resource-scarce conditions.

19.
Nat Neurosci ; 24(4): 504-515, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723433

RESUMO

The basal ganglia regulate a wide range of behaviors, including motor control and cognitive functions, and are profoundly affected in Parkinson's disease (PD). However, the functional organization of different basal ganglia nuclei has not been fully elucidated at the circuit level. In this study, we investigated the functional roles of distinct parvalbumin-expressing neuronal populations in the external globus pallidus (GPe-PV) and their contributions to different PD-related behaviors. We demonstrate that substantia nigra pars reticulata (SNr)-projecting GPe-PV neurons and parafascicular thalamus (PF)-projecting GPe-PV neurons are associated with locomotion and reversal learning, respectively. In a mouse model of PD, we found that selective manipulation of the SNr-projecting GPe-PV neurons alleviated locomotor deficit, whereas manipulation of the PF-projecting GPe-PV neurons rescued the impaired reversal learning. Our findings establish the behavioral importance of two distinct GPe-PV neuronal populations and, thereby, provide a new framework for understanding the circuit basis of different behavioral deficits in the Parkinsonian state.


Assuntos
Globo Pálido/fisiopatologia , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas , Reversão de Aprendizagem/fisiologia
20.
J Nanosci Nanotechnol ; 21(8): 4400-4405, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714334

RESUMO

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA