RESUMO
Our study delved into the detailed investigation of Cs2SnBr6double perovskites, focusing on their electrical properties, lattice dynamics, and stability. The direct bandgap for Cs2SnBr6was estimated to be at 2.93 eV. One external translational mode of the Cs+lattice withT2gsymmetry and three internal modes of the octahedral withA1g,Eg, andT2gsymmetries are defined by calculated lattice dynamics, experimental micro-Raman scattering. We show a correlation with first-principles calculations, validating using a band-structured electronic approach to understanding the behavior of charge carriers, and electron-phonon interactions in Cs2SnBr6. We propose that electron-vibration interactions result in self-trapped excitons (STEs) displaying significant Stokes shifts (0.508 eV) and broad-spectrum emission. Understanding the behavior of STEs is fundamental for their optoelectronic applications.
RESUMO
Pure and Au-decorated sub-micrometer ZnO spheres were successfully grown on glass substrates by simple chemical bath deposition and photoreduction methods. The analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, energy-dispersive X-ray spectroscopy (EDS), UV-vis absorption, and photoluminescence (PL) spectra results were used to verify the incorporation of plasmonic Au nanoparticles (NPs) on the ZnO film. Time-resolved photoluminescence (TRPL) spectra indicated that a surface plasmonic effect exists with a fast rate of charge transfer from Au nanoparticles to the sub-micrometer ZnO sphere, which suggested the strong possibility of the use of the material for the design of efficient catalytic devices. The NO2 sensing ability of as-deposited ZnO films was investigated with different gas concentrations at an optimized sensing temperature of 120 °C. Surface decoration of plasmonic Au nanoparticles provided an enhanced sensitivity (141 times) with improved response (τRes = 9 s) and recovery time (τRec = 39 s). The enhanced gas sensing performance and photocatalytic degradation processes are suggested to be attributed to not only the surface plasmon resonance effect, but also due to a Schottky barrier between plasmonic Au and ZnO structures.