Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124029

RESUMO

This study introduces a lightweight storage system for wearable devices, aiming to optimize energy efficiency in long-term and continuous monitoring applications. Utilizing Direct Memory Access and the Serial Peripheral Interface protocol, the system ensures efficient data transfer, significantly reduces energy consumption, and enhances the device autonomy. Data organization into Time Block Data (TBD) units, rather than files, significantly diminishes control overhead, facilitating the streamlined management of periodic data recordings in wearable devices. A comparative analysis revealed marked improvements in energy efficiency and write speed over existing file systems, validating the proposed system as an effective solution for boosting wearable device performance in health monitoring and various long-term data acquisition scenarios.

2.
Comput Biol Med ; 180: 108943, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096611

RESUMO

Gait analysis has proven to be a key process in the functional assessment of people involving many fields, such as diagnosis of diseases or rehabilitation, and has increased in relevance lately. Gait analysis often requires gathering data, although this can be very expensive and time consuming. One of the main solutions applied in fields when data acquisition is a problem is augmentation of datasets with artificial data. There are two main approaches for doing that: simulation and synthetic data generation. In this article, we propose a parametrizable generative system of synthetic walking simplified human skeletons. For achieving that, a data gathering experiment with up to 26 individuals was conducted. The system consists of two artificial neural networks: a recurrent neural network for the generation of the movement and a multilayer perceptron for determining the size of the segments of the skeletons. The system has been evaluated through four processes: (i) an observational appraisal by researchers in gait analysis, (ii) a visual representation of the distribution of the generated data, (iii) a numerical analysis using the normalized cross-correlation coefficient, and (iv) an angular evaluation to check the kinematic validity of the data. The evaluation concluded that the system is able to generate realistic and accurate gait data. These results reveal a promising path for this research field, which can be further improved through increasing the variety of movements and the user sample.


Assuntos
Redes Neurais de Computação , Humanos , Marcha/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos/fisiologia , Masculino , Caminhada/fisiologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA