Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 184(2): 384-403.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33450205

RESUMO

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry. In MYC-driven triple-negative breast cancer, STTs cause widespread cytoplasmic accumulation of mis-spliced mRNAs, many of which form double-stranded structures. Double-stranded RNA (dsRNA)-binding proteins recognize these endogenous dsRNAs, triggering antiviral signaling and extrinsic apoptosis. In immune-competent models of breast cancer, STTs cause tumor cell-intrinsic antiviral signaling, downstream adaptive immune signaling, and tumor cell death. Furthermore, RNA mis-splicing in human breast cancers correlates with innate and adaptive immune signatures, especially in MYC-amplified tumors that are typically immune cold. These findings indicate that dsRNA-sensing pathways respond to global aberrations of RNA splicing in cancer and provoke the hypothesis that STTs may provide unexplored strategies to activate anti-tumor immune pathways.


Assuntos
Antivirais/farmacologia , Imunidade/efeitos dos fármacos , Spliceossomos/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Íntrons/genética , Camundongos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética
2.
Nature ; 605(7911): 747-753, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585241

RESUMO

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Assuntos
Neoplasias da Mama , Metástase Neoplásica , Fosfoglicerato Desidrogenase , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Camundongos , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo
3.
J Hepatol ; 80(4): 610-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242326

RESUMO

BACKGROUND & AIMS: Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS: RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS: HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 µM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS: Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS: Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Hepatoblastoma/tratamento farmacológico , Irinotecano/uso terapêutico , Vincristina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/induzido quimicamente , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Hepáticas/patologia , Ácidos Hidroxâmicos/farmacologia
4.
PLoS Comput Biol ; 19(8): e1011365, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578979

RESUMO

Proper characterization of cancer cell states within the tumor microenvironment is a key to accurately identifying matching experimental models and the development of precision therapies. To reconstruct this information from bulk RNA-seq profiles, we developed the XDec Simplex Mapping (XDec-SM) reference-optional deconvolution method that maps tumors and the states of constituent cells onto a biologically interpretable low-dimensional space. The method identifies gene sets informative for deconvolution from relevant single-cell profiling data when such profiles are available. When applied to breast tumors in The Cancer Genome Atlas (TCGA), XDec-SM infers the identity of constituent cell types and their proportions. XDec-SM also infers cancer cells states within individual tumors that associate with DNA methylation patterns, driver somatic mutations, pathway activation and metabolic coupling between stromal and breast cancer cells. By projecting tumors, cancer cell lines, and PDX models onto the same map, we identify in vitro and in vivo models with matching cancer cell states. Map position is also predictive of therapy response, thus opening the prospects for precision therapy informed by experiments in model systems matched to tumors in vivo by cancer cell state.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/genética , RNA-Seq , Linhagem Celular , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
5.
Nature ; 544(7649): 250-254, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28371798

RESUMO

Blockade of angiogenesis can retard tumour growth, but may also paradoxically increase metastasis. This paradox may be resolved by vessel normalization, which involves increased pericyte coverage, improved tumour vessel perfusion, reduced vascular permeability, and consequently mitigated hypoxia. Although these processes alter tumour progression, their regulation is poorly understood. Here we show that type 1 T helper (TH1) cells play a crucial role in vessel normalization. Bioinformatic analyses revealed that gene expression features related to vessel normalization correlate with immunostimulatory pathways, especially T lymphocyte infiltration or activity. To delineate the causal relationship, we used various mouse models with vessel normalization or T lymphocyte deficiencies. Although disruption of vessel normalization reduced T lymphocyte infiltration as expected, reciprocal depletion or inactivation of CD4+ T lymphocytes decreased vessel normalization, indicating a mutually regulatory loop. In addition, activation of CD4+ T lymphocytes by immune checkpoint blockade increased vessel normalization. TH1 cells that secrete interferon-γ are a major population of cells associated with vessel normalization. Patient-derived xenograft tumours growing in immunodeficient mice exhibited enhanced hypoxia compared to the original tumours in immunocompetent humans, and hypoxia was reduced by adoptive TH1 transfer. Our findings elucidate an unexpected role of TH1 cells in vasculature and immune reprogramming. TH1 cells may be a marker and a determinant of both immune checkpoint blockade and anti-angiogenesis efficacy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neovascularização Patológica/imunologia , Neovascularização Fisiológica/imunologia , Neovascularização Fisiológica/fisiologia , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/transplante , Permeabilidade Capilar , Hipóxia Celular/fisiologia , Células Endoteliais/imunologia , Células Endoteliais/fisiologia , Feminino , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neovascularização Patológica/patologia , Pericitos/citologia , Pericitos/fisiologia , Prognóstico , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Mammary Gland Biol Neoplasia ; 27(2): 211-230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697909

RESUMO

Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Ratos , Suínos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
BMC Cancer ; 19(1): 220, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871481

RESUMO

BACKGROUND: Breast cancer patient-derived xenograft (BC-PDX) models represent a continuous and reproducible source of circulating tumor cells (CTCs) for studying their role in tumor biology and metastasis. We have previously shown the utility of BC-PDX models in the study of CTCs by immunohistochemistry (IHC) on serial paraffin sections and manual microscopic identification of cytokeratin-positive cells, a method that is both low-throughput and labor-intensive. We therefore aimed to identify and characterize CTCs from small volume mouse blood samples and examined its practical workflow in a study of BC-PDX mice treated with chemotherapy using an automated imaging platform, the AccuCyte®-CyteFinder® system. METHODS: CTC analysis was conducted using blood from non-tumor bearing SCID/Beige mice spiked with human breast cancer cells, BC-PDX-bearing mice, and BC-PDX mice treated with vehicle or chemotherapeutic agent(s). After red blood cell lysis, nucleated cells were mixed with transfer solution, processed onto microscope slides, and stained by immunofluorescence. The CyteFinder automated scanning microscope was used to identify CTCs, defined as nucleated cells that were human cytokeratin-positive, and mouse CD45-negative. Disaggregated primary BC-PDX tumors and lung metastatic nodules were processed using the same immunostaining protocol. Collective expression of breast cancer cell surface markers (EpCAM, EGFR, and HER2) using a cocktail of target-specific antibodies was assessed. CTCs and disaggregated tumor cells were individually retrieved from slides using the CytePicker® module for sequence analysis of a BC-PDX tumor-specific PIK3CA mutation. RESULTS: The recovery rate of human cancer cells spiked into murine blood was 83 ± 12%. CTC detection was not significantly different from the IHC method. One-third of CTCs did not stain positive for cell surface markers. A PIK3CA T1035A mutation present in a BC-PDX tumor was confirmed in isolated single CTCs and cells from dissociated metastatic nodules after whole genome amplification and sequencing. CTC evaluation could be simply implemented into a preclinical PDX therapeutic study setting with substantial improvements in workflow over the IHC method. CONCLUSIONS: Analysis of small volume blood samples from BC-PDX-bearing mice using the AccuCyte-CyteFinder system allows investigation of the role of CTCs in tumor biology and metastasis independent of surface marker expression.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Neoplásicas Circulantes/metabolismo , Análise de Célula Única/métodos , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Separação Celular , Classe I de Fosfatidilinositol 3-Quinases/sangue , Feminino , Humanos , Queratinas/sangue , Antígenos Comuns de Leucócito/sangue , Camundongos , Camundongos SCID , Mutação , Transplante de Neoplasias , Células Neoplásicas Circulantes/efeitos dos fármacos , Análise de Sequência de DNA
10.
Cancer Metastasis Rev ; 35(4): 547-573, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28025748

RESUMO

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Animais , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Pesquisa Translacional Biomédica
11.
Mol Pharmacol ; 87(2): 263-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480843

RESUMO

Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Citotoxinas/metabolismo , Mimetismo Molecular/fisiologia , Fragmentos de Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Neoplasias da Mama/genética , Citotoxinas/genética , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fragmentos de Peptídeos/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Distribuição Aleatória
12.
Breast Cancer Res ; 17: 3, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25572662

RESUMO

INTRODUCTION: Real-time monitoring of biologic changes in tumors may be possible by investigating the transitional cells such as circulating tumor cells (CTCs) and disseminated tumor cells in bone marrow (BM-DTCs). However, the small numbers of CTCs and the limited access to bone marrow aspirates in cancer patients pose major hurdles. The goal of this study was to determine whether breast cancer (BC) patient-derived xenograft (PDX) mice could provide a constant and renewable source of CTCs and BM-DTCs, thereby representing a unique system for the study of metastatic processes. METHODS: CTCs and BM-DTCs, isolated from BC PDX-bearing mice, were identified by immunostaining for human pan-cytokeratin and nuclear counterstaining of red blood cell-lysed blood and bone marrow fractions, respectively. The rate of lung metastases (LM) was previously reported in these lines. Associations between the presence of CTCs, BM-DTCs, and LM were assessed by the Fisher's Exact and Cochran-Mantel-Haenszel tests. Two separate genetic signatures associated with the presence of CTC clusters and with lung metastatic potential were computed by using the expression arrays of primary tumors from different PDX lines and subsequently overlapped to identify common genes. RESULTS: In total, 18 BC PDX lines were evaluated. CTCs and BM-DTCs, present as either single cells or clusters, were detected in 83% (15 of 18) and 62.5% (10 to16) of the lines, respectively. A positive association was noted between the presence of CTCs and BM-DTCs within the same mice. LM was previously found in 9 of 18 (50%) lines, of which all nine had detectable CTCs. The presence of LM was strongly associated with the detection of CTC clusters but not with individual cells or detection of BM-DTCs. Overlapping of the two genetic signatures of the primary PDX tumors associated with the presence of CTC clusters and with lung metastatic potential identified four genes (HLA-DP1A, GJA1, PEG3, and XIST). This four-gene profile predicted distant metastases-free survival in publicly available datasets of early BC patients. CONCLUSION: This study suggests that CTCs and BM-DTCs detected in BC PDX-bearing mice may represent a valuable and unique preclinical model for investigating the role of these rare cells in tumor metastases.


Assuntos
Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Pulmonares/secundário , Camundongos , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Prognóstico , Transcriptoma
13.
Cell Rep Med ; 5(6): 101595, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838676

RESUMO

Luminal androgen receptor (LAR)-enriched triple-negative breast cancer (TNBC) is a distinct subtype. The efficacy of AR inhibitors and the relevant biomarkers in neoadjuvant therapy (NAT) are yet to be determined. We tested the combination of the AR inhibitor enzalutamide (120 mg daily by mouth) and paclitaxel (80 mg/m2 weekly intravenously) (ZT) for 12 weeks as NAT for LAR-enriched TNBC. Eligibility criteria included a percentage of cells expressing nuclear AR by immunohistochemistry (iAR) of at least 10% and a reduction in sonographic volume of less than 70% after four cycles of doxorubicin and cyclophosphamide. Twenty-four patients were enrolled. Ten achieved a pathologic complete response or residual cancer burden-I. ZT was safe, with no unexpected side effects. An iAR of at least 70% had a positive predictive value of 0.92 and a negative predictive value of 0.97 in predicting LAR-enriched TNBC according to RNA-based assays. Our data support future trials of AR blockade in early-stage LAR-enriched TNBC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Terapia Neoadjuvante , Nitrilas , Paclitaxel , Feniltioidantoína , Receptores Androgênicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feniltioidantoína/uso terapêutico , Feniltioidantoína/farmacologia , Nitrilas/uso terapêutico , Benzamidas/uso terapêutico , Feminino , Receptores Androgênicos/metabolismo , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Idoso , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
14.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745510

RESUMO

Tumor-initiating cells (TIC) are a tumor cell subpopulation thought to be responsible for therapeutic resistance and metastasis. Using a S ignal T ransducer and A ctivator of T ranscription (STAT) reporter, and a STAT-responsive lineage tracing system, we enriched for cells with enhanced mammosphere-forming potential in some, but not all, triple-negative breast cancer xenograft models (TNBC) indicating TIC-related and TIC-independent functions for STAT signaling. Single-cell RNA sequencing (scRNA-seq) of reporter-tagged xenografts identified a common interferon-associated transcriptional state, previously linked to inflammation and macrophage differentiation, in TIC. Similar transcriptional states exist in human breast cancer patient scRNA-seq datasets. Flow cytometric sorting using bone marrow stromal cell antigen 2 (BST2), a marker of this state, enriched for TIC, and BST2 knockdown reduced mammosphere-forming potential. These results suggest TIC may exploit the interferon response pathway to promote their activity in TNBC. Our results lay the groundwork to target interferon-associated pathways in TIC in a subset of TNBC.

15.
Tomography ; 9(2): 810-828, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104137

RESUMO

Co-clinical trials are the concurrent or sequential evaluation of therapeutics in both patients clinically and patient-derived xenografts (PDX) pre-clinically, in a manner designed to match the pharmacokinetics and pharmacodynamics of the agent(s) used. The primary goal is to determine the degree to which PDX cohort responses recapitulate patient cohort responses at the phenotypic and molecular levels, such that pre-clinical and clinical trials can inform one another. A major issue is how to manage, integrate, and analyze the abundance of data generated across both spatial and temporal scales, as well as across species. To address this issue, we are developing MIRACCL (molecular and imaging response analysis of co-clinical trials), a web-based analytical tool. For prototyping, we simulated data for a co-clinical trial in "triple-negative" breast cancer (TNBC) by pairing pre- (T0) and on-treatment (T1) magnetic resonance imaging (MRI) from the I-SPY2 trial, as well as PDX-based T0 and T1 MRI. Baseline (T0) and on-treatment (T1) RNA expression data were also simulated for TNBC and PDX. Image features derived from both datasets were cross-referenced to omic data to evaluate MIRACCL functionality for correlating and displaying MRI-based changes in tumor size, vascularity, and cellularity with changes in mRNA expression as a function of treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador
16.
Cancer Res ; 83(19): 3237-3251, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071495

RESUMO

Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE: Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Mutação
17.
Cell Rep Med ; 4(12): 101326, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118413

RESUMO

Multiple cancers exhibit aberrant protein arginine methylation by both type I arginine methyltransferases, predominately protein arginine methyltransferase 1 (PRMT1) and to a lesser extent PRMT4, and by type II PRMTs, predominately PRMT5. Here, we perform targeted proteomics following inhibition of PRMT1, PRMT4, and PRMT5 across 12 cancer cell lines. We find that inhibition of type I and II PRMTs suppresses phosphorylated and total ATR in cancer cells. Loss of ATR from PRMT inhibition results in defective DNA replication stress response activation, including from PARP inhibitors. Inhibition of type I and II PRMTs is synergistic with PARP inhibition regardless of homologous recombination function, but type I PRMT inhibition is more toxic to non-malignant cells. Finally, we demonstrate that the combination of PARP and PRMT5 inhibition improves survival in both BRCA-mutant and wild-type patient-derived xenografts without toxicity. Taken together, these results demonstrate that PRMT5 inhibition may be a well-tolerated approach to sensitize tumors to PARP inhibition.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular , Replicação do DNA , Arginina/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Proteínas Repressoras/metabolismo
18.
iScience ; 26(1): 105799, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36619972

RESUMO

Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.

19.
EMBO Mol Med ; 15(4): e16715, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36880458

RESUMO

Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER- ) from four independent cohorts. RANK protein expression was more frequent in ER- tumors, where it associated with poor outcome and poor response to chemotherapy. In ER- breast cancer patient-derived orthoxenografts (PDXs), RANKL inhibition reduced tumor cell proliferation and stemness, regulated tumor immunity and metabolism, and improved response to chemotherapy. Intriguingly, tumor RANK protein expression associated with poor prognosis in postmenopausal breast cancer patients, activation of NFKB signaling, and modulation of immune and metabolic pathways, suggesting that RANK signaling increases after menopause. Our results demonstrate that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and ER- breast cancer patients and support the therapeutic benefit of RANK pathway inhibitors, such as denosumab, in breast cancer patients with RANK+ ER- tumors after menopause.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Denosumab/farmacologia , Denosumab/uso terapêutico , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/uso terapêutico , Pós-Menopausa , Ligante RANK , Transdução de Sinais
20.
Tomography ; 9(2): 657-680, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36961012

RESUMO

The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.


Assuntos
Neoplasias , Animais , Camundongos , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Modelos Animais de Doenças , Diagnóstico por Imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA