Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125075

RESUMO

Banana peels, comprising about 35% of the fruit's weight, are often discarded, posing environmental and economic issues. This research focuses on recycling banana peel waste by optimizing advanced extraction techniques, specifically microwave-assisted (MAE) and ultrasound-assisted extraction (UAE), for the isolation of phenolic compounds. A choline chloride-based deep eutectic solvent (DES) with glycerol in a 1:3 ratio with a water content of 30% (w/w) was compared to 30% ethanol. Parameters, including sample-to-solvent ratio (SSR), extraction time, and temperature for MAE or amplitude for UAE, were varied. Extracts were analyzed for hydroxycinnamic acid (HCA) and flavonoid content, and antioxidant activity using FRAP and ABTS assays. DES outperformed ethanol, with HCA content ranging from 180.80 to 765.92 mg/100 g and flavonoid content from 96.70 to 531.08 mg/100 g, accompanied by higher antioxidant activity. Optimal MAE conditions with DES were an SSR of 1:50, a temperature of 60 °C, and a time of 10 min, whereas an SSR of 1:60, time of 5 min, and 75% amplitude were optimal for UAE. The polyphenolic profile of optimized extracts comprised 19 individual compounds belonging to the class of flavonols, flavan-3-ols, and phenolic acids. This study concluded that DESs, with their superior extraction efficiency and environmental benefits, are promising solvents for the extraction of high-value bioactive compounds from banana peels and offer significant potential for the food and pharmaceutical industries.


Assuntos
Antioxidantes , Solventes Eutéticos Profundos , Musa , Fenóis , Extratos Vegetais , Musa/química , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/análise , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes Eutéticos Profundos/química , Flavonoides/química , Flavonoides/isolamento & purificação , Frutas/química , Micro-Ondas , Química Verde/métodos , Solventes/química
2.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542987

RESUMO

The aim of the present study was to evaluate microwave-assisted (MAE) and pressurized liquid extraction (PLE) for the recovery of polyphenols from blackcurrant and bilberry leaves and the preservation of their antioxidant activity. The extractions were carried out varying the solvent/solid (SS) ratio, temperature and time. During MAE, increasing the SS ratio increased the polyphenol concentration in the extracts from blackcurrant and bilberry leaves, while increasing the temperature had a positive effect only on bilberry polyphenols. During PLE, only a temperature increase was a determining factor for the isolation of blackcurrant leave polyphenols. Based on polyphenol recovery, optimal extraction parameters were established resulting in a yield of 62.10 and 56.06 mg/g dw in the blackcurrant and bilberry MAE extracts and 78.90 and 70.55 mg/g dw in the PLE extracts. The optimized extracts were profiled by UPLC ESI MS2, and their antioxidant capacity was evaluated through FRAP, DPPH, ABTS and ORAC assays. The characterization of the extracts by UPLC ESI MS2 confirmed flavonols as the predominant compounds in both blackcurrant and bilberry leaves, while flavan-3-ols and procyanidins were the main compounds responsible for high antioxidant capacity as confirmed by the ABTS and ORAC assays. Due to the extract composition and antioxidant capacity, PLE proved to be a technique of choice for the production of blackcurrant and bilberry leave extracts with high potential for use as value-added ingredients in the food and nutraceutical industry.


Assuntos
Benzotiazóis , Polifenóis , Ácidos Sulfônicos , Vaccinium myrtillus , Polifenóis/química , Antioxidantes/química , Micro-Ondas , Solventes/química , Extratos Vegetais/química
3.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014331

RESUMO

Laurus nobilis L., known as laurel or bay leaf, is a Mediterranean plant which has been long known for exhibiting various health-beneficial effects that can largely be attributed to the polyphenolic content of the leaves. Pressurized liquid extraction (PLE) is a green extraction technique that enables the efficient isolation of polyphenols from different plant materials. Hence, the aim of this research was to determine optimal conditions for PLE (solvent, temperature, number of extraction cycles and static extraction time) of laurel leaf polyphenols and to assess the polyphenolic profile of the optimal extract by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) as well as to evaluate the antioxidant activity determined by FRAP, DPPH and ORAC assays. The optimal PLE conditions were 50% ethanol, 150 °C, one extraction cycle and 5 min static time. The polyphenolic extract obtained at optimal PLE conditions comprised 29 identified compounds, among which flavonols (rutin and quercetin-3-glucoside) were the most abundant. The results of antioxidant activity assays demonstrated that PLE is an efficient green technique for obtaining polyphenol-rich laurel leaf extracts with relatively high antioxidant activity.


Assuntos
Laurus , Polifenóis , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Laurus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Espectrometria de Massas em Tandem
4.
Foods ; 12(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37685175

RESUMO

Bay leaves (L. nobilis L.) are a rich source of polyphenols that hold great potential for application in functional food products in which where the main challenges are the polyphenols' low stability and bioaccessibility, which can be overcome through different microencapsulation techniques, such as electrostatic extrusion, which hasn't been applied for the encapsulation of bay leaf polyphenols (BLP) to date. Therefore, the main goal of this research was to evaluate the potential of this technique through monitoring the polyphenolic content, antioxidant activity, release kinetics, and bioaccessibility of the encapsulated BLP. The results showed that electrostatic extrusion was suitable for the encapsulation of BLP, where 1% alginate and 1.5% CaCl2 with 0.5% chitosan resulted in the highest encapsulation efficiency (92.76%) and antioxidant activity in vitro. The use of 1.5% or 2% alginate with 5% CaCl2 + 0.5% chitosan showed the most controlled release of polyphenols, while encapsulation generally increased the bioaccessibility of BLP. The results showed that electrostatic extrusion can be considered an efficient technique for the microencapsulation of BLP.

5.
Foods ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174461

RESUMO

Laurel (Laurus nobilis L.) leaves are a rich source of polyphenols with the potential for use in functional foods, where the main obstacle is their low stability and bioavailability, which can be improved by spray drying (SD). This research examined the influence of SD parameters, including inlet temperature (120, 150, and 180 °C), carrier type (ß-cyclodextrin (ß-CD); ß-CD + maltodextrin (MD) 50:50; ß-CD + gum arabic (GA) 50:50), and sample:carrier ratio (1:1, 1:2 and 1:3) on the physicochemical properties, encapsulation efficiency, polyphenolic profile, antioxidant capacity and bioaccessibility of laurel leaf polyphenols. The highest encapsulation efficiency was achieved at a sample:carrier ratio 1:2 and the temperature of 180 °C by using either of the applied carriers. However, the application of ß-CD + MD 50:50 ensured optimal solubility (55.10%), hygroscopicity (15.32%), and antioxidant capacity (ORAC 157.92 µmol Trolox equivalents per g of powder), while optimal moisture content (3.22%) was determined only by temperature, demanding conditions above 150 °C. A total of 29 polyphenols (dominantly flavonols) were identified in the obtained powders. SD encapsulation increased the bioaccessibility of laurel flavonols in comparison to the non-encapsulated extract by ~50% in the gastric and ~10% in the intestinal phase, especially for those powders produced with carrier mixtures.

6.
Foods ; 11(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053967

RESUMO

In recent years, the market demand for products enhanced with ingredients derived from natural products, such as polyphenols, is rapidly increasing. Laurus nobilis L., known as bay, sweet bay, bay laurel, Roman laurel or daphne is an evergreen Mediterranean shrub whose leaves have traditionally been used in cuisines and folk medicine due to their beneficial health effects, which can nowadays be scientifically explained by various biological activities of the leaf extracts. Many of these activities can be attributed to phenolic compounds present in L. nobilis leaves which include flavonoids, phenolic acids, tannins (proanthocyanidins) and lignans. In order to enable efficient industrial utilization of these valuable compounds, it is crucial to establish optimal extraction procedures resulting in the highest yields and quality of the extracts. This paper offers the first systematic review of current literature on the influence of conventional and advanced extraction techniques, including microwave-assisted, ultrasound-assisted, enzyme-assisted, supercritical-CO2 and mechanochemical-assisted extraction on the phenolic content of L. nobilis leaf extracts, allowing more efficient planning of further research and simplifying the steps towards industrial utilization of this plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA