Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664461

RESUMO

The sleep apnea-hypopnea syndrome (SAHS) involves periods of intermittent hypoxia, experimentally reproduced by exposing animal models to oscillatory PO2 patterns. In both situations, chronic intermittent hypoxia (CIH) exposure produces carotid body (CB) hyperactivation generating an increased input to the brainstem which originates sympathetic hyperactivity, followed by hypertension that is abolished by CB denervation. CB has dopamine (DA) receptors in chemoreceptor cells acting as DA-2 autoreceptors. The aim was to check if blocking DA-2 receptors could decrease the CB hypersensitivity produced by CIH, minimizing CIH-related effects. Domperidone (DOM), a selective peripheral DA-2 receptor antagonist that does not cross the blood-brain barrier, was used to examine its effect on CIH (30 days) exposed rats. Arterial pressure, CB secretory activity and whole-body plethysmography were measured. DOM, acute or chronically administered during the last 15 days of CIH, reversed the hypertension produced by CIH, an analogous effect to that obtained with CB denervation. DOM marginally decreased blood pressure in control animals and did not affect hypoxic ventilatory response in control or CIH animals. No adverse effects were observed. DOM, used as gastrokinetic and antiemetic drug, could be a therapeutic opportunity for hypertension in SAHS patients' resistant to standard treatments.


Assuntos
Antagonistas de Dopamina/farmacologia , Hipertensão/tratamento farmacológico , Hipóxia/tratamento farmacológico , Receptores Dopaminérgicos/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Hipertensão/metabolismo , Hipóxia/metabolismo , Masculino , Ratos , Ratos Wistar , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L670-L685, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351439

RESUMO

Application of H2S ("sulfide") elicits a complex contraction in rat pulmonary arteries (PAs) comprising a small transient contraction (phase 1; Ph1) followed by relaxation and then a second, larger, and more sustained contraction (phase 2; Ph2). We investigated the mechanisms causing this response using isometric myography in rat second-order PAs, with Na2S as a sulfide donor. Both phases of contraction to 1,000 µM Na2S were attenuated by the pan-PKC inhibitor Gö6983 (3 µM) and by 50 µM ryanodine; the Ca2+ channel blocker nifedipine (1 µM) was without effect. Ph2 was attenuated by the mitochondrial complex III blocker myxothiazol (1 µM), the NADPH oxidase (NOX) blocker VAS2870 (10 µM), and the antioxidant TEMPOL (3 mM) but was unaffected by the complex I blocker rotenone (1 µM). The bath sulfide concentration, measured using an amperometric sensor, decreased rapidly following Na2S application, and the peak of Ph2 occurred when this had fallen to ~50 µM. Sulfide caused a transient increase in NAD(P)H autofluorescence, the offset of which coincided with development of the Ph2 contraction. Sulfide also caused a brief mitochondrial hyperpolarization (assessed using tetramethylrhodamine ethyl ester), followed immediately by depolarization and then a second more prolonged hyperpolarization, the onset of which was temporally correlated with the Ph2 contraction. Sulfide application to cultured PA smooth muscle cells increased reactive oxygen species (ROS) production (recorded using L012); this was absent when the mitochondrial flavoprotein sulfide-quinone oxoreductase (SQR) was knocked down using small interfering RNA. We propose that the Ph2 contraction is largely caused by SQR-mediated sulfide metabolism, which, by donating electrons to ubiquinone, increases electron production by complex III and thereby ROS production.


Assuntos
Benzoquinonas/química , Sulfeto de Hidrogênio/farmacologia , Músculo Liso Vascular/fisiologia , Oxirredutases/metabolismo , Artéria Pulmonar/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/química , Animais , Cálcio/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Liso Vascular/citologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar
3.
Adv Exp Med Biol ; 1071: 51-59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357733

RESUMO

The molecular mechanisms underlying O2-sensing by carotid body (CB) chemoreceptors remain undetermined. Mitochondria have been implicated, due to the sensitivity of CB response to electron transport chain (ETC) blockers. ETC is one of the major sources of reactive oxygen species, proposed as mediators in oxygen sensing. Fas-activated serine/threonine phosphoprotein is a sensor of mitochondrial stress that modulates protein translation to promote survival of cells exposed to adverse conditions. A translational variant of Fas-activated serine/threonine kinase (FASTK) is required for the biogenesis of ND6 mRNA, the mitochondrial encoded subunit 6 of the NADH dehydrogenase complex (Complex I). Ablating FASTK expression reduced Complex I activity in vivo by about 50%. We have tested the hypothesis of Complex I participation in O2-sensing structures by studying the effect of hypoxia in FASTK-/- knockout mice. Ventilatory response to acute hypoxia and hypercapnia tests showed similar sensitivity and CB catecholaminergic activity in knockout and wild type mice; hypoxic pulmonary vasoconstriction response also was similar. Pulmonary artery contractility in vitro, using small vessel myography, showed a significantly decreased relaxation to rotenone in knockout mice pre-constricted vessels with PGF2α. In conclusion, FASTK-/- knockout mice maintain respiratory chemoreflex under hypoxia and hypercapnia stress suggesting that completely functional Complex I ND6 protein is not required for these responses.


Assuntos
Corpo Carotídeo/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Hipóxia/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Hipercapnia/fisiopatologia , Camundongos , Camundongos Knockout , Mitocôndrias , Proteínas Serina-Treonina Quinases/genética
4.
Antioxidants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052557

RESUMO

Chronic sustained hypoxia (CSH), as found in individuals living at a high altitude or in patients suffering respiratory disorders, initiates physiological adaptations such as carotid body stimulation to maintain oxygen levels, but has deleterious effects such as pulmonary hypertension (PH). Obstructive sleep apnea (OSA), a respiratory disorder of increasing prevalence, is characterized by a situation of chronic intermittent hypoxia (CIH). OSA is associated with the development of systemic hypertension and cardiovascular pathologies, due to carotid body and sympathetic overactivation. There is growing evidence that CIH can also compromise the pulmonary circulation, causing pulmonary hypertension in OSA patients and animal models. The aim of this work was to compare hemodynamics, vascular contractility, and L-arginine-NO metabolism in two models of PH in rats, associated with CSH and CIH exposure. We demonstrate that whereas CSH and CIH cause several common effects such as an increased hematocrit, weight loss, and an increase in pulmonary artery pressure (PAP), compared to CIH, CSH seems to have more of an effect on the pulmonary circulation, whereas the effects of CIH are apparently more targeted on the systemic circulation. The results suggest that the endothelial dysfunction evident in pulmonary arteries with both hypoxia protocols are not due to an increase in methylated arginines in these arteries, although an increase in plasma SDMA could contribute to the apparent loss of basal NO-dependent vasodilation and, therefore, the increase in PAP that results from CIH.

5.
Front Physiol ; 9: 694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922183

RESUMO

Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O2) and hypercapnia (5% CO2) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH promoted cardiovascular adjustments by increasing heart rate and mean arterial blood pressure without cardiac ventricle hypertrophy. In conclusion, CIH does not sensitize CB chemoreceptor response to hypoxia but promotes cardiovascular adjustments probably not mediated by the CB. Guinea pigs could represent an interesting model to elucidate the mechanisms that underlie the long-term effects of CIH exposure to provide evidence for the role of the CB mediating pathological effects in sleep apnea diseases.

6.
Front Physiol ; 8: 285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533756

RESUMO

Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, in vitro CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO2 than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K+ currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca2+ levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA