Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(14): 4975-83, 2013 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-23443676

RESUMO

Poly(α-methylstyrene sulfonic acid) (PAMS) represents a class of polymers that can form the protogenic constituent in electrolyte membranes for fuel cells. Oxidative stress is thought to play an important role in the degradation of the fuel cell membranes. Having previously established that damage may be mediated via abstraction of a benzylic hydrogen, we examined model compounds similar to those used before, but with a methyl group at the α-position. We studied the reaction of HO˙ and SO4(˙-), generated by pulse radiolysis, with model compounds in aqueous solution, and measured k = (2 ± 0.5) × 10(10) M(-1) s(-1) and (2 - 3) × 10(10) M(-1) s(-1) for the reaction of HO˙ with PAMS with average molecular weights of 2640 Da (PAMS-2640) and 6440 Da (PAMS-6440), respectively, at room temperature. At low pH, the decay of the hydroxycyclohexadienyl radical thus formed is accompanied by the formation of an absorption band in the visible region of the spectrum, which we tentatively assign to the radical cation of PAMS-2640 and -6440. The radical cation of PAMS-2640, formed by the reaction of SO4(˙-) with k = (6 ± 1) × 10(8) M(-1) s(-1), has a local absorption maximum at 560 nm, with ε560 ≥ 1400 M(-1) cm(-1). For the reaction of HO˙ and SO4(˙-) with the model compound benzenesulfonate, we measured k = (4-5) × 10(9) M(-1) s(-1) and (1.0 ± 0.3) × 10(8) M(-1) s(-1), respectively, while the reaction of SO4(˙-) with PAMS-6440 proceeds with (0.8-1) × 10(9) M(-1) s(-1). The 4-sulfophenoxyl radical was generated via the reaction of N3˙ with 4-hydroxybenzenesulfonate; ε410 ≥ 2300 M(-1) cm(-1). Not unexpectedly, the radical cation of PAMS is longer-lived than that of polystyrene sulfonic acid. Furthermore, fragmentation may result in desulfonation.


Assuntos
Radical Hidroxila/química , Estirenos/química , Sulfatos/química , Estrutura Molecular
2.
Phys Chem Chem Phys ; 13(27): 12429-34, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21655568

RESUMO

Clarification of the mechanism of degradation of model compounds for polymers used in polymer electrolyte fuel cells may identify intermediates that propagate damage; such knowledge can be used to improve the lifetime of fuel cell membranes, a central issue to continued progress in fuel cell technology. In proton-exchange membranes based on poly(styrene sulfonic acid), hydroxycyclohexadienyl radicals are formed after reaction with HO˙ and thought to decay to short-lived radical cations at low pH. To clarify subsequent reactions, we generated radical cations by reaction of SO(4)˙(-) with oligomers of poly(styrene sulfonic acid) (MW ≈ 1100 Da). At 295 K, this reaction proceeds with k = (4.5 ± 0.6) × 10(8) M(-1) s(-1), both at pH 2.4 and 3.4, and yields benzyl radicals with an estimated yield of ≤60% relative to [SO(4)˙(-)]. The radical cation is too short-lived to be observed: based on a benzyl radical yield of 60%, a lower limit of k > 6.8 × 10(5) s(-1) for the intramolecular transformation of the aromatic radical cation of the oligomer to a benzyl radical is deduced. Our results show that formation of the benzyl radical, an important precursor in the breakdown of the polymer, is irreversible.

3.
Phys Chem Chem Phys ; 12(37): 11609-16, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20689867

RESUMO

An understanding of the reactivity of oligomeric compounds that model fuel cell membrane materials under oxidative-stress conditions that mimic the fuel cell operating environment can identify material weaknesses and yield valuable insights into how a polymer might be modified to improve oxidative stability. The reaction of HO˙ radicals with a polymer electrolyte fuel cell membrane represents an initiation step for irreversible membrane oxidation. By means of pulse radiolysis, we measured k = (9.5 ± 0.6) × 10(9) M(-1) s(-1) for the reaction of HO˙ with poly(sodium styrene sulfonate), PSSS, with an average molecular weight of 1100 Da (PSSS-1100) in aqueous solution at room temperature. In the initial reaction of HO˙ with the oligomer (90 ± 10)% react by addition to form hydroxycyclohexadienyl radicals, while the remaining abstract a hydrogen to yield benzyl radicals. The hydroxycyclohexadienyl radicals react reversibly with dioxygen to form the corresponding peroxyl radicals; the second-order rate constant for the forward reaction is k(f) = (3.0 ± 0.5) × 10(7) M(-1) s(-1), and for the back reaction, we derive an upper limit for the rate constant k(r) of (4.5 ± 0.9) × 10(3) s(-1). These data place a lower bound on the equilibrium constant K of (7 ± 2) × 10(3) M(-1) at 295 K, which allows us to calculate a lower limit of the Gibbs energy for the reaction, (-21.7 ± 0.8) kJ mol(-1). At pH 1, the hydroxycyclohexadienyl radicals decay with an overall first-order rate constant k of (6 ± 1) × 10(3) s(-1) to yield benzyl radicals. The second-order rate constant for reaction of dioxygen with benzyl radicals of PSSS-1100 is k = (2-5) × 10(8) M(-1) s(-1). We discuss hydrogen abstraction from PSSS-1100 in terms of the bond dissociation energy, and relate these to relevant electrode potentials. We propose a reaction mechanism for the decay of hydroxycyclohexadienyl radicals and subsequent reaction steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA