Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 217(3): 1213-1229, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315638

RESUMO

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.


Assuntos
Genômica , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Transcriptoma/genética , Sequência Conservada/genética , Fungos/classificação , Fungos/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Filogenia , Metabolismo Secundário/genética , Especificidade por Substrato , Regulação para Cima/genética
2.
BMC Genet ; 14: 66, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23924218

RESUMO

BACKGROUND: Penstemon's unique phenotypic diversity, hardiness, and drought-tolerance give it great potential for the xeric landscaping industry. Molecular markers will accelerate the breeding and domestication of drought tolerant Penstemon cultivars by, creating genetic maps, and clarifying of phylogenetic relationships. Our objectives were to identify and validate interspecific molecular markers from four diverse Penstemon species in order to gain specific insights into the Penstemon genome. RESULTS: We used a 454 pyrosequencing and GR-RSC (genome reduction using restriction site conservation) to identify homologous loci across four Penstemon species (P. cyananthus, P. davidsonii, P. dissectus, and P. fruticosus) representing three diverse subgenera with considerable genome size variation. From these genomic data, we identified 133 unique interspecific markers containing SSRs and INDELs of which 51 produced viable PCR-based markers. These markers produced simple banding patterns in 90% of the species × marker interactions (~84% were polymorphic). Twelve of the markers were tested across 93, mostly xeric, Penstemon taxa (72 species), of which ~98% produced reproducible marker data. Additionally, we identified an average of one SNP per 2,890 bp per species and one per 97 bp between any two apparent homologous sequences from the four source species. We selected 192 homologous sequences, meeting stringent parameters, to create SNP markers. Of these, 75 demonstrated repeatable polymorphic marker functionality across the four sequence source species. Finally, sequence analysis indicated that repetitive elements were approximately 70% more prevalent in the P. cyananthus genome, the largest genome in the study, than in the smallest genome surveyed (P. dissectus). CONCLUSIONS: We demonstrated the utility of GR-RSC to identify homologous loci across related Penstemon taxa. Though PCR primer regions were conserved across a broadly sampled survey of Penstemon species (93 taxa), DNA sequence within these amplicons (12 SSR/INDEL markers) was highly diverse. With the continued decline in next-generation sequencing costs, it will soon be feasible to use genomic reduction techniques to simultaneously sequence thousands of homologous loci across dozens of Penstemon species. Such efforts will greatly facilitate our understanding of the phylogenetic structure within this important drought tolerant genus. In the interim, this study identified thousands of SNPs and over 50 SSRs/INDELs which should provide a foundation for future Penstemon phylogenetic studies and breeding efforts.


Assuntos
Marcadores Genéticos , Genoma de Planta , Penstemon/genética , Filogenia , DNA de Plantas/genética , Mutação INDEL , Repetições de Microssatélites , Penstemon/classificação , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos
3.
Genome ; 54(2): 160-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21326372

RESUMO

Penstemon is the largest genus in North America with more than 270 reported species. However, little is known about its genome size. This information may be useful in developing hybrids for landscape use and for gaining insight into its current taxonomy. Using flow cytometry, we estimated the genome size of approximately 40% of the genus (115 accessions from 105 different species). Genome sizes for both reported and probable diploids range from P. dissectus 2C = 0.94 pg (1C = 462 Mbp) to P. pachyphyllus var. mucronatus 2C = 1.88 pg (1C = 919 Mbp), and the polyploids range from P. attenuatus var. attenuatus 2C = 2.35 pg (1C = 1148 Mbp) to P. digitalis 2C = 6.45 pg (1C = 3152 Mbp). Chromosome counts were done for ten previously published and four previously unreported Penstemon species (P. dissectus, P. navajoa, P. caespitosus var. desertipicti, and P. ramaleyi). These counts were compiled with all previously published chromosome data and compared with the flow cytometry results. Ploidy within this study ranged from diploid to dodecaploid. These data were compared and contrasted with the current taxonomy of Penstemon and previously published internal transcribed spacer and chloroplast DNA phylogenetic work. Based on genome size and previous studies, reassigning P. montanus to the subgenus Penstemon and P. personatus to the subgenus Dasanthera, would better reflect the phylogeny of the genus. Furthermore, our data concur with previous studies suggesting that the subgenus Habroanthus be included in the subgenus Penstemon. The DNA content of subgenus Penstemon exhibits high plasticity and spans a sixfold increase from the smallest to the largest genome (P. linarioides subsp. sileri and P. digitalis, respectively). Our study found flow cytometry to be useful in species identification and verification.


Assuntos
Cromossomos de Plantas/genética , DNA de Plantas/genética , Genoma de Planta , Penstemon/genética , Poliploidia , Diploide , Citometria de Fluxo , América do Norte , Penstemon/classificação , Filogenia , Especificidade da Espécie
4.
Genome Announc ; 6(25)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930051

RESUMO

The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).

5.
Nat Ecol Evol ; 2(12): 1956-1965, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420746

RESUMO

Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Características de História de Vida , Micorrizas/genética , Simbiose , Ascomicetos/fisiologia , DNA Fúngico/análise , Micorrizas/fisiologia , Filogenia , Análise de Sequência de DNA
6.
Genome Announc ; 5(43)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074648

RESUMO

The halotolerant alga Dunaliella salina is a model for stress tolerance and is used commercially for production of beta-carotene (=pro-vitamin A). The presented draft genome of the genuine strain CCAP19/18 will allow investigations into metabolic processes involved in regulation of stress responses, including carotenogenesis and adaptations to life in high-salinity environments.

7.
Genome Announc ; 4(1)2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26950333

RESUMO

We present the full genome of Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota), a foliar endophyte of white spruce from eastern Quebec. DAOMC 229536 produces the anti-insectan compound rugulosin, which inhibits a devastating forestry pest, the spruce budworm. This genome will enable fungal genotyping and host-endophyte evolutionary genomics in inoculated trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA