Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Phys Med Rehabil ; 93(11 Suppl 3): S132-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24800720

RESUMO

Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Doenças Neurodegenerativas/terapia , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Esclerose Lateral Amiotrófica/diagnóstico , Animais , Sistema Nervoso Central/citologia , Estudos de Coortes , Terapia Combinada , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/diagnóstico , Doença de Parkinson/diagnóstico , Modalidades de Fisioterapia , Prognóstico , Qualidade de Vida , Recuperação de Função Fisiológica , Medicina Regenerativa/métodos , Medição de Risco , Células-Tronco/fisiologia , Resultado do Tratamento
2.
Cell ; 129(2): 345-57, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17448993

RESUMO

Stem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation. Furthermore, Zfx deletion abolished the maintenance of adult HSC but did not affect erythromyeloid progenitors or fetal HSC. Zfx-deficient ESC and HSC showed increased apoptosis and SC-specific upregulation of stress-inducible genes. Zfx directly activated common target genes in ESC and HSC, as well as ESC-specific target genes including ESC self-renewal regulators Tbx3 and Tcl1. These studies identify Zfx as a shared transcriptional regulator of ESC and HSC, suggesting a common genetic basis of self-renewal in embryonic and adult SC.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Marcação de Genes , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA