RESUMO
Elevated concentrations of As, Cr, Cu, Ni, Pb, V and Zn in topsoils in Belfast, Northern Ireland have been found to exceed assessment criteria in the city and therefore may pose a risk to human health. Most generic assessment criteria (GAC) for potentially toxic elements (PTEs) in soils assume PTEs are 100% bioavailable to humans. Here we use in-vitro oral bioaccessibility testing using the Unified BARGE method (UBM) to measure what proportion of soil contamination dissolves in the digestive tract and therefore is available for absorption by the body. This study considers how PTE bioaccessibility in soils varies spatially across urban areas and refines human health risk assessment for these PTEs using site specific oral bioaccessibility results to present the first regional assessment of risk that incorporates bioaccessibility testing. A total of 103 urban soil samples were selected for UBM testing. Results showed low bioaccessible fraction (BAF) for the PTEs from geogenic sources: Cr (0.45-5.9%), Ni (1.1-46.3%) and V (2.2-23.9%). Higher BAF values were registered for PTEs from anthropogenic sources: As (8.0-86.9%), Cu (3.4-67.8%), Pb (9.1-106.2%) and Zn (2.4-77.5%). Graphs of bioaccessibility adjusted assessment criteria (BAAC) were derived for each urban land use type and PTE. These provide a visual representation of the significance of oral bioaccessibility when deriving BAAC and how this is affected by 1) dominant exposure pathways for each land use and 2) relative harm posed from exposure to PTEs via each pathway, allowing oral bioaccessibility research to be targeted to contaminants and pathways that most significantly impact risk assessment. Pb was the most widespread contaminant with 16.5% of sites exceeding the Pb GAC. Applying BAAC did not significantly change risk evaluation for these samples as many had Pb BAF>50%. In contrast, all samples that exceeded the As GAC were found to no longer exceed a minimal level of risk when oral bioaccessibility was considered. Oral bioaccessibility testing resulted in a 45% reduction in the number of sites identified as posing a potential risk to human health.
Assuntos
Disponibilidade Biológica , Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Medição de Risco , Poluentes do Solo/análise , Irlanda do Norte , Humanos , Monitoramento Ambiental/métodos , Metais Pesados/análise , Cidades , Solo/químicaRESUMO
Chronic kidney disease (CKD), a collective term for many causes of progressive renal failure, is increasing worldwide due to ageing, obesity and diabetes. However, these factors cannot explain the many environmental clusters of renal disease that are known to occur globally. This study uses data from the UK Renal Registry (UKRR) including CKD of uncertain aetiology (CKDu) to investigate environmental factors in Belfast, UK. Urbanisation has been reported to have an increasing impact on soils. Using an urban soil geochemistry database of elemental concentrations of potentially toxic elements (PTEs), we investigated the association of the standardised incidence rates (SIRs) of both CKD and CKD of uncertain aetiology (CKDu) with environmental factors (PTEs), controlling for social deprivation. A compositional data analysis approach was used through balances (a special class of log contrasts) to identify elemental balances associated with CKDu. A statistically significant relationship was observed between CKD with the social deprivation measures of employment, income and education (significance levels of 0.001, 0.01 and 0.001, respectively), which have been used as a proxy for socio-economic factors such as smoking. Using three alternative regression methods (linear, generalised linear and Tweedie models), the elemental balances of Cr/Ni and As/Mo were found to produce the largest correlation with CKDu. Geogenic and atmospheric pollution deposition, traffic and brake wear emissions have been cited as sources for these PTEs which have been linked to kidney damage. This research, thus, sheds light on the increasing global burden of CKD and, in particular, the environmental and anthropogenic factors that may be linked to CKDu, particularly environmental PTEs linked to urbanisation.
Assuntos
Poluição Ambiental/análise , Insuficiência Renal Crônica/epidemiologia , Poluentes do Solo/análise , Urbanização , Adolescente , Adulto , Idoso , Humanos , Incidência , Pessoa de Meia-Idade , Solo/química , Reino Unido , Adulto JovemRESUMO
The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a "typical" concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.
Assuntos
Poluição Ambiental/estatística & dados numéricos , Substâncias Perigosas/normas , Poluentes do Solo/toxicidade , Testes de Toxicidade/métodos , Arsênio/análise , Arsênio/toxicidade , Monitoramento Ambiental , Geologia , Metais Pesados/análise , Metais Pesados/toxicidade , Modelos Estatísticos , Irlanda do Norte , Medição de Risco/métodos , Poluentes do Solo/normasRESUMO
Isotopic techniques have been used to study phenomena in the geological, environmental, and ecological sciences. For example, isotopic values of multiple elements elucidate the pathways energy and nutrients take in the environment. Isoscapes interpolate isotopic values across a geographical surface and are used to study environmental processes in space and time. Thus, isoscapes can reveal ecological shifts at local scales, and show distribution thresholds in the wider environment at the macro-scale. This study demonstrates a further application of isoscapes, using soil isoscapes of 13C/12C and 15N/14N as an environmental baseline, to understand variation in trophic ecology across a population of Eurasian badgers (Meles meles) at a regional scale. The use of soil isoscapes reduced error, and elevated the statistical signal, where aggregated badger hairs were used, and where individuals were identified using genetic microarray analysis. Stable isotope values were affected by land-use type, elevation, and meteorology. Badgers in lowland habitats had diets richer in protein and were adversely affected by poor weather conditions in all land classes. It is concluded that soil isoscapes are an effective way of reducing confounding biases in macroscale, isotopic studies. The method elucidated variation in the trophic and spatial ecology of economically important taxa at a landscape level. These results have implications for the management of badgers and other carnivores with omnivorous tendencies in heterogeneous landscapes.
RESUMO
Poor storage of industrial wastes has been a cause of land contamination issues. These wastes or by-products have the potential to be used as secondary raw materials in construction, promoting the concept of a circular economy that will avoid land contamination. Here we evaluate radiological environmental impacts when wastes that contain elevated levels of naturally occurring radionuclides (NORs) such as red mud, fly ash and ground granulated blast furnace slag are made into 'green cements' such as geopolymers or alkali-activated materials (AAMs). During the study, three AAM concrete and mortar series with various mixing ratios were prepared and investigated. The NOR content, I-Index, radon emanation and exhalation of the precursor waste materials and their cement products were measured and calculated and the strength of the cement products was compared. The emanation and the exhalation properties were calculated for the final products, weighing the data of the components as a function of their mixing ratio. The I-index alone suggested that the AAMs would be suitable products. AAMs containing ground granulated blast furnace slag exhibited the lowest radon exhalation and higher compressive strength, while the fly ash and red mud AAMs had increased final radon exhalation. In the case of fly ash, alkaline activation of fly ash dramatically increased the radon exhalation; the highest measured fly ash exhalation was 1.49 times of the theoretically calculated exhalation value. This highlights the increased risk of using fly ash as a component in AAMs and the need to carry out testing on the final products as well as individual secondary raw materials.
RESUMO
This work aimed at the comprehensive analysis of total microbial communities inhabiting a typical hydrocarbon-polluted site, where chemical characteristics of the groundwater were readily available. To achieve this, a joint metagenomic characterization of bacteria and viruses surrounding a contaminant plume was performed over a one-year period. The results presented demonstrated that both potential hydrocarbon degraders and their bacteriophages were dominant around the plume, and that the viral and bacterial diversities found at the site were probably influenced by the pH of the groundwater. Niche-specific and dispersed associations between phages and bacteria were identified. The niche phage-host associations were found at the edge of the site and at the core of the plume where pH was the highest (9.52). The identified host populations included several classes of bacteria (e.g. Clostridia and Proteobacteria). Thirty-six viral generalists were also discovered, with BGW-G9 having the broadest host range across 23 taxa, including Pseudomonas, Polycyclovorans, Methylocaldum and Candidatus Magnetobacterium species. The phages with broad host ranges are presumed to have significant effects on prokaryotic production and horizontal gene transfer, and therefore impact the biodegradation processes conducted by various bacteria of the environment studied. This study for the first time characterized the phages and their bacterial hosts associated with a contaminant plume.
Assuntos
Bactérias/genética , Água Subterrânea/microbiologia , Metagenoma , Microbiota , Poluentes do Solo/análise , Vírus/genética , Bactérias/classificação , Água Subterrânea/virologia , Irlanda do Norte , Vírus/classificaçãoRESUMO
Here, we show the electrical response, bacterial community, and remediation of hydrocarbon-contaminated groundwater from a gasworks site using a graphite-chambered bio-electrochemical system (BES) that utilizes granular activated carbon (GAC) as both sorption agent and high surface area anode. Our innovative concept is the design of a graphite electrode chamber system rather than a classic non-conductive BES chamber coupled with GAC as part of the BES. The GAC BES is a good candidate as a sustainable remediation technology that provides improved degradation over GAC, and near real-time observation of associated electrical output. The BES chambers were effectively colonized by the bacterial communities from the contaminated groundwater. Principal coordinate analysis (PCoA) of UniFrac Observed Taxonomic Units shows distinct grouping of microbial types that are associated with the presence of GAC, and grouping of microbial types associated with electroactivity. Bacterial community analysis showed that ß-proteobacteria (particularly the PAH-degrading Pseudomonadaceae) dominate all the samples. Rhodocyclaceae- and Comamonadaceae-related OTU were observed to increase in BES cells. The GAC BES (99% removal) outperformed the control graphite GAC chamber, as well as a graphite BES and a control chamber both filled with glass beads.
Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Bactérias/metabolismo , Carvão Vegetal/química , Eletrodos , Hidrocarbonetos/metabolismoRESUMO
This study characterises the naturally occurring radionuclide (NOR) contents of a suite of secondary raw materials or industrial residues that are normally disposed of in landfills or lagoons but now are increasingly used in green concretes. This includes ashes from a variety of industrial processes and red mud from aluminium production, as well as air pollution control residue and cement kiln dust. The chemical composition of the samples was determined with X-ray fluorescence spectroscopy (XRF). The Ra-226, Th-232 and K-40 activity concentrations were obtained by gamma spectrometry, and the results were compared with recently published NOR databases. The correlation between the NOR contents and the main chemical composition was investigated. The radioactive equilibrium in the U-238 chain was studied based on the determination of progeny isotopes. The most commonly used calculation methods (activity concentration index and radium equivalent concentration) were applied to classify the samples. The radon exhalation rate of the samples was measured, and the radon emanation coefficient was calculated. Significant correlation was found between the NORs and certain chemical components. The massic exhalation demonstrated a broad range, and it was found that the emanation coefficients were significantly lower in the case of the residues generated as a result of high-temperature combustion processes. The results showed a weak correlation between the Ra-226 concentration and the radon exhalation. This emphasises that managing the Ra-226 content of recycled material by itself is not sufficient to control the radon exhalation of recycled materials used in building products. The investigated parameters and their correlation behaviour could be used to source apportion materials found during the process of landfill mining and recovery of material for recycling.
RESUMO
Global exponential increase in levels of Photovoltaic (PV) module waste is an increasing concern. The purpose of this study is to investigate if there is energy value in the polymers contained within first-generation crystalline silicon (c-Si) PV modules to help contribute positively to recycling rates and the circular economy. One such thermochemical conversion method that appeals to this application is pyrolysis. As c-Si PV modules are made up of glass, metal, semiconductor and polymer layers; pyrolysis has potential not to promote chemical oxidation of any of these layers to help aid delamination and subsequently, recovery. Herein, we analysed both used polymers taken from a deconstructed used PV module and virgin-grade polymers prior to manufacture to determine if any properties or thermal behaviours had changed. The calorific values of the used and virgin-grade Ethylene vinyl acetate (EVA) encapsulant were found to be high, unchanged and comparable to that of biodiesel at 39.51 and 39.87 MJ.Kg-1, respectively. This result signifies that there is energy value within used modules. As such, this study has assessed the pyrolysis behaviour of PV cells and has indicated the energy recovery potential within the used polymers found in c-Si PV modules.
RESUMO
Here we combine the use of geo-electrical techniques with geochemical analysis of the solid and liquid phase to determine subsurface properties and general peatland health. Active, degrading and restored peat locations were analysed from the same blanket bog site (ensuring they were under the same environmental conditions, such as rainfall and temperature) at the Garron Plateau, Northern Ireland. A normalized chargeability (ratio of resistivity (inverse of conductivity) and chargeability) profile was compared with organic composition analysis of the solid and liquid phases from active, degrading and restored locations. Results show that the degrading location is undergoing high rates of decomposition and loss of organic matter into the interstitial water, whereas the opposite is true for the active location. The restored peat is showing low rates of decomposition however has a high concentration of organic material in the porewater, primarily composing long chain aliphatic compounds, sourced from vascular plants. The ingression of vascular plants permits the diffusion of oxygen via roots into the subsurface and supports the oxidation of phenols by phenol oxidase, which produces phenoxy radicals and quinones (CO double bonds). This production of conjugated quinones, which are characterized by a CO double bond, in the aerated degrading and restored locations, increase the polarity, cation exchange capacity, and the normalized chargeability of the peat. This higher chargeability is not evident in the active peat due to decreased aerobic decomposition and a domination of sphagnum mosses.
RESUMO
Here we used organic composition and stable isotopic analysis to evaluate the effects of drainage and restoration at an ombrotrophic peatland, to assess whether rewetting of blanket bogs will reverse degradation. The organic composition of the peat and the isotopic fractionation between the solid (peat), liquid (pore water) and gas (soil gas) phases on actively accumulating, degrading and restored locations are compared. Fourier Transform Infrared Spectroscopy (FTIR) analysis of the organic material has shown a high level of humification (low decomposition) in the active peat. Stable isotope analysis in the solid, liquid and gas phases has corresponded with this and indicated that the active location is enriched in 13C in the solid and gas phases, 15N in the solid phase, 18O in the liquid and gas phases and D in the liquid phase, suggesting a closed system with limited isotopic fractionation and thus limited water movement and decomposition. The degrading location has a lower level of humification, and is depleted in 13C in the solid phase due to ingression of vascular plants. The restored location has high humification and enrichment of 13C and 15N in the solid phase, and D in the liquid phase suggesting increased microbial activity. 13C and 18O in the gas phase and 18O in the liquid phase are depleted, as a result of microbial mediated gas production and rewetting. FTIR analysis has also indicated a subsurface zone of increased decomposition between the acrotelm and catotelm in both the active and degrading peat. This is due to a stable water table and is not present within the restored location, which we attribute to water table fluctuation associated with rewetting. This zone of increased decomposition adds to the complexity of blanket bog peatlands and the assumption that all systems can be generalized under one conceptual model.
RESUMO
Increasing urbanisation has a direct impact on soil quality, resulting in elevated concentrations of potentially toxic elements (PTEs) in soils. This research aims to assess if soil PTE concentrations can be used as an 'urbanisation tracer' by investigating geogenic and anthropogenic source contributions and controls, and considering PTE enrichment across historical urban development zones. The UK cities of Belfast and Sheffield are chosen as study areas, where available shallow and deep concentrations of PTEs in soil are compared to identify geogenic and anthropogenic contributions to PTEs. Cluster analysis and principal component analysis are used to elucidate the main controls over PTE concentrations. Pollution indices indicate that different periods of historical development are linked to enrichment of different PTEs. Urban subdomains are identified and background values calculated using various methodologies and compared to generic site assessment criteria. Exceedances for a number of the PTEs considered suggest a potential human health risk could be posed across subdomains of both Belfast and Sheffield. This research suggests that airborne diffuse contamination from often historical sources such as traffic, domestic combustion and industrial processes contribute greatly to soil contamination within urban environments. The relationship between historical development and differing PTEs is a novel finding, suggesting that PTEs have the potential for use as 'urbanisation tracers'. The investigative methodology employed has potential applications for decision makers, urban planners, regulators and developers of urban areas.
Assuntos
Cidades , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Poluentes do Solo/química , Solo/química , Urbanização/tendências , Inglaterra , Humanos , Indústrias , Irlanda do Norte , Análise de Componente Principal , Fatores de TempoRESUMO
The environmental fate of polybrominated diphenyl ethers (PBDEs), a group of flame retardants that are considered to be persistent organic pollutants (POPs), around the Zhuoshui River and Changhua County regions of Taiwan was assessed. An investigation into emissions, partitioning, and fate of selected PBDEs was conducted based on the equilibrium constant (EQC) fugacity model developed at Trent University, Canada. Emissions for congeners PBDE 47, PBDE 99, and PBDE 209 to air (4.9-92 × 10(-3) kg/h), soil (0.91-17.4 × 10(-3) kg/h), and water (0.21-4.04 × 10(-3) kg/h), were estimated by modifying previous models on PBDE emission rates by considering both industrial and domestic rates. It was found that fugacity modeling can give a reasonable estimation of the behavior, partitioning, and concentrations of PBDE congeners in and around Taiwan. Results indicate that PBDE congeners have a high affinity for partitioning into sediments then soils. As congener number decreases, the PBDEs then partition more readily into air. As the degree of bromination increases, congeners more readily partition to sediments. Sediments may then act as a long-term source of PBDEs which can be released back into the water column due to resuspension during storm events.
Assuntos
Poluentes Ambientais/química , Éteres Difenil Halogenados/química , Modelos Químicos , Monitoramento Ambiental , Retardadores de Chama , Modelos Teóricos , Solo , Taiwan , Poluentes Químicos da ÁguaRESUMO
Inductively coupled plasma (ICP) following aqua regia digestion and X-ray fluorescence (XRF) are both geochemical techniques used to determine 'total' concentrations of elements in soil. The aim of this study is to compare these techniques, identify elements for which inconsistencies occur and investigate why they arise. A study area (â¼14,000 km(2)) with a variety of total concentration controls and a large geochemical dataset (n = 7950) was selected. Principal component analysis determined underlying variance in a dataset composed of both geogenic and anthropogenic elements. Where inconsistencies between the techniques were identified, further numerical and spatial analysis was completed. The techniques are more consistent for elements of geogenic sources and lead, whereas other elements of anthropogenic sources show less consistency within rural samples. XRF is affected by sample matrix, while the form of element affects ICP concentrations. Depending on their use in environmental studies, different outcomes would be expected from the techniques employed, suggesting the choice of analytical technique for geochemical analyses may be more critical than realised.
Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/química , Solo/química , Espectrometria por Raios X , Espectrofotometria AtômicaRESUMO
Lead (Pb) is a non-threshold toxin capable of inducing toxic effects at any blood level but availability of soil screening criteria for assessing potential health risks is limited. The oral bioaccessibility of Pb in 163 soil samples was attributed to sources through solubility estimation and domain identification. Samples were extracted following the Unified BARGE Method. Urban, mineralisation, peat and granite domains accounted for elevated Pb concentrations compared to rural samples. High Pb solubility explained moderate-high gastric (G) bioaccessible fractions throughout the study area. Higher maximum G concentrations were measured in urban (97.6 mg kg(-1)) and mineralisation (199.8 mg kg(-1)) domains. Higher average G concentrations occurred in mineralisation (36.4 mg kg(-1)) and granite (36.0 mg kg(-1)) domains. Findings suggest diffuse anthropogenic and widespread geogenic contamination could be capable of presenting health risks, having implications for land management decisions in jurisdictions where guidance advises these forms of pollution should not be regarded as contaminated land.
Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluição Ambiental/estatística & dados numéricos , Chumbo/análise , Poluentes do Solo/análise , Medição de Risco , Solo/químicaRESUMO
Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).