Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Robot ; 4(33)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33137787

RESUMO

The performance of indwelling medical devices that depend on an interface with soft tissue is plagued by complex, unpredictable foreign body responses. Such devices-including breast implants, biosensors, and drug delivery devices-are often subject to a collection of biological host responses, including fibrosis, which can impair device functionality. This work describes a milliscale dynamic soft reservoir (DSR) that actively modulates the biomechanics of the biotic-abiotic interface by altering strain, fluid flow, and cellular activity in the peri-implant tissue. We performed cyclical actuation of the DSR in a preclinical rodent model. Evaluation of the resulting host response showed a significant reduction in fibrous capsule thickness (P = 0.0005) in the actuated DSR compared with non-actuated controls, whereas the collagen density and orientation were not changed. We also show a significant reduction in myofibroblasts (P = 0.0036) in the actuated group and propose that actuation-mediated strain reduces differentiation and proliferation of myofibroblasts and therefore extracellular matrix production. Computational models quantified the effect of actuation on the reservoir and surrounding fluid. By adding a porous membrane and a therapy reservoir to the DSR, we demonstrate that, with actuation, we could (i) increase transport of a therapy analog and (ii) enhance pharmacokinetics and time to functional effect of an inotropic agent. The dynamic reservoirs presented here may act as a versatile tool to further understand, and ultimately to ameliorate, the host response to implantable biomaterials.

2.
Ann Biomed Eng ; 43(4): 1036-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25281407

RESUMO

Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters.


Assuntos
Reatores Biológicos , Células da Medula Óssea/metabolismo , Simulação por Computador , Modelos Biológicos , Osteogênese , Estresse Mecânico , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Suínos
3.
J R Soc Interface ; 9(77): 3503-13, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22915633

RESUMO

Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors.


Assuntos
Resposta ao Choque Térmico , Células-Tronco Mesenquimais/fisiologia , Procedimentos Ortopédicos/efeitos adversos , Temperatura , Células 3T3 , Animais , Apoptose , Reabsorção Óssea , Calcificação Fisiológica , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteócitos/citologia , Osteócitos/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA