Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Dyn ; 251(10): 1711-1727, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618654

RESUMO

BACKGROUND: Asymmetries in craniofacial anomalies are commonly observed. In the facial skeleton, the left side is more commonly and/or severely affected than the right. Such asymmetries complicate treatment options. Mechanisms underlying variation in disease severity between individuals as well as within individuals (asymmetries) are still relatively unknown. RESULTS: Developmental reductions in fibroblast growth factor 8 (Fgf8) have a dosage dependent effect on jaw size, shape, and symmetry. Further, Fgf8 mutants have directionally asymmetric jaws with the left side being more affected than the right. Defects in lower jaw development begin with disruption to Meckel's cartilage, which is discontinuous. All skeletal elements associated with the proximal condensation are dysmorphic, exemplified by a malformed and misoriented malleus. At later stages, Fgf8 mutants exhibit syngnathia, which falls into two broad categories: bony fusion of the maxillary and mandibular alveolar ridges and zygomatico-mandibular fusion. All of these morphological defects exhibit both inter- and intra-specimen variation. CONCLUSIONS: We hypothesize that these asymmetries are linked to heart development resulting in higher levels of Fgf8 on the right side of the face, which may buffer the right side to developmental perturbations. This mouse model may facilitate future investigations of mechanisms underlying human syngnathia and facial asymmetry.


Assuntos
Região Branquial , Coração , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Humanos , Anormalidades Maxilomandibulares , Maxila , Camundongos , Anormalidades da Boca
2.
Sci Rep ; 13(1): 14451, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660150

RESUMO

Increasing evidence suggests that chronic inflammation plays an important role in the pathogenesis of age-related macular degeneration (AMD); however, the precise pathogenic stressors and sensors, and their impact on disease progression remain unclear. Several studies have demonstrated that type I interferon (IFN) response is activated in the retinal pigment epithelium (RPE) of AMD patients. Previously, we demonstrated that human RPE cells can initiate RNA-mediated type I IFN responses through RIG-I, yet are unable to directly sense and respond to DNA. In this study, we utilized a co-culture system combining primary human macrophage and iPS-derived RPE to study how each cell type responds to nucleic acids challenges and their effect on RPE barrier function in a homotypic and heterotypic manner. We find that DNA-induced macrophage activation induces an IFN response in the RPE, and compromises RPE barrier function via tight-junction remodeling. Investigation of the secreted cytokines responsible for RPE dysfunction following DNA-induced macrophages activation indicates that neutralization of macrophage-secreted TNFα, but not IFNß, is sufficient to rescue RPE morphology and barrier function. Our data reveals a novel mechanism of intercellular communication by which DNA induces RPE dysfunction via macrophage-secreted TNFa, highlighting the complexity and potential pathological relevance of RPE and macrophage interactions.


Assuntos
Interferon Tipo I , Degeneração Macular , Ácidos Nucleicos , Humanos , Fator de Necrose Tumoral alfa , DNA , Citocinas , Macrófagos
3.
PLoS One ; 13(11): e0206801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395621

RESUMO

Myocilin (MYOC) is the gene with mutations most common in glaucoma. In the eye, MYOC is in trabecular meshwork, ciliary body, and retina. Other tissues with high MYOC transcript levels are skeletal muscle and heart. To date, the function of wild-type MYOC remains unknown and how mutant MYOC causes high intraocular pressure and glaucoma is ambiguous. By investigating mutant MYOC in a non-ocular tissue we hoped to obtain novel insight into mutant MYOC pathology. For this study, we utilized a transgenic mouse expressing human mutant MYOC Y437H protein and we examined its skeletal (gastrocnemius) muscle phenotype. Electron micrographs showed that sarcomeres in the skeletal muscle of mutant CMV-MYOC-Y437H mice had multiple M-bands. Western blots of soluble muscle lysates from transgenics indicated a decrease in two M-band proteins, myomesin 1 (MYOM1) and muscle creatine kinase (CKM). Immunoprecipitation identified CKM as a MYOC binding partner. Our results suggest that binding of mutant MYOC to CKM is changing sarcomere ultrastructure and this may adversely impact muscle function. We speculate that a person carrying the mutant MYOC mutation will likely have a glaucoma phenotype and may also have undiagnosed muscle ailments or vice versa, both of which will have to be monitored and treated.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Glicoproteínas/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Mutação , Sarcômeros/genética , Sarcômeros/ultraestrutura , Animais , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Glaucoma de Ângulo Aberto/metabolismo , Glicoproteínas/metabolismo , Humanos , Pressão Intraocular/genética , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miocárdio/metabolismo , Fenótipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcômeros/metabolismo , Malha Trabecular/metabolismo , Malha Trabecular/ultraestrutura
4.
Nat Commun ; 8(1): 1970, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213092

RESUMO

Robustness to perturbation is a fundamental feature of complex organisms. Mutations are the raw material for evolution, yet robustness to their effects is required for species survival. The mechanisms that produce robustness are poorly understood. Nonlinearities are a ubiquitous feature of development that may link variation in development to phenotypic robustness. Here, we manipulate the gene dosage of a signaling molecule, Fgf8, a critical regulator of vertebrate development. We demonstrate that variation in Fgf8 expression has a nonlinear relationship to phenotypic variation, predicting levels of robustness among genotypes. Differences in robustness are not due to gene expression variance or dysregulation, but emerge from the nonlinearity of the genotype-phenotype curve. In this instance, embedded features of development explain robustness differences. How such features vary in natural populations and relate to genetic variation are key questions for unraveling the origin and evolvability of this feature of organismal development.


Assuntos
Evolução Molecular , Variação Genética , Modelos Genéticos , Fenótipo , Animais , Evolução Biológica , Simulação por Computador , Fator 8 de Crescimento de Fibroblasto/genética , Dosagem de Genes , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , Masculino , Camundongos , Mutação , Dinâmica não Linear , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA