RESUMO
Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1â5)-α-D-kdop-(1âsidechain). We suggest that MGP2 encodes an inverting RG-II CMP-ß-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de Genes , Glicosiltransferases , Pectinas , Arabidopsis/genética , Arabidopsis/metabolismo , Pectinas/metabolismo , Edição de Genes/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Parede Celular/metabolismo , Parede Celular/genética , Sistemas CRISPR-Cas , Mutação/genéticaRESUMO
Upon infection of Escherichia coli by bacteriophage Qß, the virus-encoded ß-subunit recruits host translation elongation factors EF-Tu and EF-Ts and ribosomal protein S1 to form the Qß replicase holoenzyme complex, which is responsible for amplifying the Qß (+)-RNA genome. Here, we use X-ray crystallography, NMR spectroscopy, as well as sequence conservation, surface electrostatic potential and mutational analyses to decipher the roles of the ß-subunit and the first two oligonucleotide-oligosaccharide-binding domains of S1 (OB1-2) in the recognition of Qß (+)-RNA by the Qß replicase complex. We show how three basic residues of the ß subunit form a patch located adjacent to the OB2 domain, and use NMR spectroscopy to demonstrate for the first time that OB2 is able to interact with RNA. Neutralization of the basic residues by mutagenesis results in a loss of both the phage infectivity in vivo and the ability of Qß replicase to amplify the genomic RNA in vitro. In contrast, replication of smaller replicable RNAs is not affected. Taken together, our data suggest that the ß-subunit and protein S1 cooperatively bind the (+)-stranded Qß genome during replication initiation and provide a foundation for understanding template discrimination during replication initiation.