Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37876299

RESUMO

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagem de Perfusão/métodos , Marcadores de Spin , Circulação Cerebrovascular/fisiologia , Angiografia por Ressonância Magnética/métodos , Perfusão
3.
Magn Reson Med ; 91(5): 1787-1802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37811778

RESUMO

PURPOSE: To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. METHODS: Developers self-assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. RESULTS: The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo-continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade-off between ease of use and flexibility for configuring advanced processing options. CONCLUSION: Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well-documented, publicly available, support multiple ASL types, have a user-friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Marcadores de Spin , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Artérias , Imagem de Perfusão , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Perfusão
4.
J Magn Reson Imaging ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400805

RESUMO

BACKGROUND: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can degrade image quality. PURPOSE: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps. STUDY TYPE: Retrospective. POPULATION: Data from N = 221 adults, including patients with Alzheimer's disease (AD), Parkinson's disease, and traumatic brain injury. FIELD STRENGTH/SEQUENCE: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts. ASSESSMENT: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cognitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen's d effect size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric. STATISTICAL TESTS: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson's correlation. P < 0.05 was considered significant. RESULTS: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76-0.88) was similar (P = 0.56) to inter-rater correlation (R = 0.81, CI: 0.73-0.87) for the 2D data. CBF reproducibility correlated negatively (R = -0.74, CI: -0.84 to -0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59-0.82) as low QEI data was discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77-0.92) of 3D ASL was similar (P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64-0.87). The QEI correlated (R = 0.87, CI: 0.77-0.92) significantly better with manual ratings than did an existing approach (R = 0.54, CI: 0.30-0.72). DATA CONCLUSION: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

5.
Hum Brain Mapp ; 44(10): 3943-3953, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148501

RESUMO

White matter hyperintensity (WMH) lesions on T2 fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and changes in adjacent normal-appearing white matter can disrupt computerized tract reconstruction and result in inaccurate measures of structural brain connectivity. The virtual lesion approach provides an alternative strategy for estimating structural connectivity changes due to WMH. To assess the impact of using young versus older subject diffusion MRI data for virtual lesion tractography, we leveraged recently available diffusion MRI data from the Human Connectome Project (HCP) Lifespan database. Neuroimaging data from 50 healthy young (39.2 ± 1.6 years) and 46 healthy older (74.2 ± 2.5 years) subjects were obtained from the publicly available HCP-Aging database. Three WMH masks with low, moderate, and high lesion burdens were extracted from the WMH lesion frequency map of locally acquired FLAIR MRI data. Deterministic tractography was conducted to extract streamlines in 21 WM bundles with and without the WMH masks as regions of avoidance in both young and older cohorts. For intact tractography without virtual lesion masks, 7 out of 21 WM pathways showed a significantly lower number of streamlines in older subjects compared to young subjects. A decrease in streamline count with higher native lesion burden was found in corpus callosum, corticostriatal tract, and fornix pathways. Comparable percentages of affected streamlines were obtained in young and older groups with virtual lesion tractography using the three WMH lesion masks of increasing severity. We conclude that using normative diffusion MRI data from young subjects for virtual lesion tractography of WMH is, in most cases, preferable to using age-matched normative data.


Assuntos
Leucoaraiose , Substância Branca , Humanos , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Envelhecimento/patologia , Leucoaraiose/patologia
6.
Hum Brain Mapp ; 43(12): 3680-3693, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429100

RESUMO

White matter hyperintensities (WMHs) are emblematic of cerebral small vessel disease, yet effects on the brain have not been well characterized at midlife. Here, we investigated whether WMH volume is associated with brain network alterations in midlife adults. Two hundred and fifty-four participants from the Coronary Artery Risk Development in Young Adults study were selected and stratified by WMH burden into Lo-WMH (mean age = 50 ± 3.5 years) and Hi-WMH (mean age = 51 ± 3.7 years) groups of equal size. We constructed group-level covariance networks based on cerebral blood flow (CBF) and gray matter volume (GMV) maps across 74 gray matter regions. Through consensus clustering, we found that both CBF and GMV covariance networks partitioned into modules that were largely consistent between groups. Next, CBF and GMV covariance network topologies were compared between Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path length, global efficiency) and regional (degree, betweenness centrality, local efficiency) levels. At the global level, there were no between-group differences in either CBF or GMV covariance networks. In contrast, we found between-group differences in the regional degree, betweenness centrality, and local efficiency of several brain regions in both CBF and GMV covariance networks. Overall, CBF and GMV covariance analyses provide evidence that WMH-related network alterations are present at midlife.


Assuntos
Leucoaraiose , Substância Branca , Vasos Coronários , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
7.
Am J Kidney Dis ; 79(5): 677-687.e1, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34543687

RESUMO

RATIONALE & OBJECTIVE: The safety of intensive blood pressure (BP) targets is controversial for persons with chronic kidney disease (CKD). We studied the effects of hypertension treatment on cerebral perfusion and structure in individuals with and without CKD. STUDY DESIGN: Neuroimaging substudy of a randomized trial. SETTING & PARTICIPANTS: A subset of participants in the Systolic Blood Pressure Intervention Trial (SPRINT) who underwent brain magnetic resonance imaging studies. Presence of baseline CKD was assessed by estimated glomerular filtration rate (eGFR) and urinary albumin-creatinine ratio (UACR). INTERVENTION: Participants were randomly assigned to intensive (systolic BP <120 mm Hg) versus standard (systolic BP <140 mm Hg) BP lowering. OUTCOMES: The magnetic resonance imaging outcome measures were the 4-year change in global cerebral blood flow (CBF), white matter lesion (WML) volume, and total brain volume (TBV). RESULTS: A total of 716 randomized participants with a mean age of 68 years were enrolled; follow-up imaging occurred after a median 3.9 years. Among participants with eGFR <60 mL/min/1.73 m2 (n = 234), the effects of intensive versus standard BP treatment on change in global CBF, WMLs, and TBV were 3.38 (95% CI, 0.32 to 6.44) mL/100 g/min, -0.06 (95% CI, -0.16 to 0.04) cm3 (inverse hyperbolic sine-transformed), and -3.8 (95% CI, -8.3 to 0.7) cm3, respectively. Among participants with UACR >30 mg/g (n = 151), the effects of intensive versus standard BP treatment on change in global CBF, WMLs, and TBV were 1.91 (95% CI, -3.01 to 6.82) mL/100 g/min, 0.003 (95% CI, -0.13 to 0.13) cm3 (inverse hyperbolic sine-transformed), and -7.0 (95% CI, -13.3 to -0.3) cm3, respectively. The overall treatment effects on CBF and TBV were not modified by baseline eGFR or UACR; however, the effect on WMLs was attenuated in participants with albuminuria (P = 0.04 for interaction). LIMITATIONS: Measurement variability due to multisite design. CONCLUSIONS: Among adults with hypertension who have primarily early kidney disease, intensive versus standard BP treatment did not appear to have a detrimental effect on brain perfusion or structure. The findings support the safety of intensive BP treatment targets on brain health in persons with early kidney disease. FUNDING: SPRINT was funded by the National Institutes of Health (including the National Heart, Lung, and Blood Institute; the National Institute of Diabetes and Digestive and Kidney Diseases; the National Institute on Aging; and the National Institute of Neurological Disorders and Stroke), and this substudy was funded by the National Institutes of Diabetes and Digestive and Kidney Diseases. TRIAL REGISTRATION: SPRINT was registered at ClinicalTrials.gov with study number NCT01206062.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Idoso , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Perfusão
8.
Alzheimers Dement ; 18(12): 2428-2437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35142033

RESUMO

OBJECTIVE: To examine longitudinal race and sex differences in mid-life brain health and to evaluate whether cardiovascular health (CVH) or apolipoprotein E (APOE) ε4 explain differences. METHODS: The study included 478 Black and White participants (mean age: 50 years). Total (TBV), gray (GMV), white (WMV), and white matter hyperintensity (WMH) volumes and GM-cerebral blood flow (CBF) were acquired with 3T-magnetic resonance imaging at baseline and 5-year follow-up. Analyses were based on general linear models. RESULTS: There were race x sex interactions for GMV (P-interaction = .004) and CBF (P-interaction = .01) such that men showed more decline than women, and this was most evident in Blacks. Blacks compared to Whites had a significantly greater increase in WMH (P = .002). All sex-race differences in change were marginally attenuated by CVH and APOE ε4. CONCLUSION: Race-sex differences in brain health emerge by mid-life. Identifying new environmental factors beyond CVH is needed to develop early interventions to maintain brain health.


Assuntos
Cárdia , Substância Branca , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Apolipoproteína E4 , Qualidade de Vida , Substância Branca/diagnóstico por imagem
9.
Magn Reson Med ; 85(5): 2781-2790, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33270943

RESUMO

PURPOSE: Thalamic nuclei are largely invisible in conventional MRI due to poor contrast. Thalamus Optimized Multi-Atlas Segmentation (THOMAS) provides automatic segmentation of 12 thalamic nuclei using white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence at 7T, but increases overall scan duration. Routinely acquired, bias-corrected Magnetization Prepared 2 Rapid Gradient Echo (MP2RAGE) sequence yields superior tissue contrast and quantitative T1 maps. Application of THOMAS to MP2RAGE has been investigated in this study. METHODS: Eight healthy volunteers and five pediatric-onset multiple sclerosis patients were recruited at Children's Hospital of Philadelphia and scanned at Siemens 7T with WMn-MPRAGE and multi-echo-MP2RAGE (ME-MP2RAGE) sequences. White-matter-nulled contrast was synthesized (MP2-SYN) from T1 maps from ME-MP2RAGE sequence. Thalamic nuclei were segmented using THOMAS joint label fusion algorithm from WMn-MPRAGE and MP2-SYN datasets. THOMAS pipeline was modified to use majority voting to segment bias corrected T1-weighted uniform (MP2-UNI) images. Thalamic nuclei from MP2-SYN and MP2-UNI images were evaluated against corresponding nuclei obtained from WMn-MPRAGE images using dice coefficients, volume similarity indices (VSIs) and distance between centroids. RESULTS: For MP2-SYN, dice > 0.85 and VSI > 0.95 was achieved for five larger nuclei and dice > 0.6 and VSI > 0.7 was achieved for seven smaller nuclei. The dice and VSI were slightly higher, whereas the distance between centroids were smaller for MP2-SYN compared to MP2-UNI, indicating improved performance using the MP2-SYN image. CONCLUSIONS: THOMAS algorithm can successfully segment thalamic nuclei in MP2RAGE images with essentially equivalent quality as WMn-MPRAGE, widening its applicability in studies focused on thalamic involvement in aging and disease.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Algoritmos , Encéfalo , Criança , Humanos , Imageamento por Ressonância Magnética , Núcleos Talâmicos/diagnóstico por imagem
10.
Hum Brain Mapp ; 41(4): 855-864, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31651075

RESUMO

Midlife metabolic and vascular risk factors (MVRFs) predict cognitive decline and dementia; however, these risk factors tend to overlap, and the mechanisms underlying their effects on cognitive performance are not well understood. This cross-sectional study investigates the contributions of MVRFs to regional cerebral blood flow (CBF) and verbal learning & memory among middle-aged adults. We used partial least squares (PLS) analysis to create latent risk factor profiles and examine their associations to CBF in 93 regions of interest among 451 participants (age 50.3 ± 3.5 years) of the Coronary Artery Risk Development in Young Adults. This multivariate analysis revealed regional CBF was lower in relation to obesity (higher body mass index and waist circumference), dysregulated glucose homeostasis (higher fasting glucose, oral glucose tolerance, and higher fasting insulin), and adverse fasting lipid profile (lower high-density lipoprotein cholesterol and higher triglycerides). In a sensitivity analysis, we found that significant associations between MVRFs and CBF were prominent in the hypertension-medicated subgroup. In a mediation model, the PLS-based MVRFs profile was associated with memory performance (rey auditory verbal learning test); however, CBF was not a significant mediator of this association. The results describe an adverse midlife metabolic profile that might set the stage for incipient dementia and contribute to widespread changes in CBF.


Assuntos
Circulação Cerebrovascular , Disfunção Cognitiva/epidemiologia , Doença das Coronárias/epidemiologia , Dislipidemias/epidemiologia , Transtornos do Metabolismo de Glucose/epidemiologia , Hipertensão/epidemiologia , Obesidade/epidemiologia , Aprendizagem Verbal , Circulação Cerebrovascular/fisiologia , Comorbidade , Estudos Transversais , Demência/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estados Unidos/epidemiologia , Aprendizagem Verbal/fisiologia
11.
Hippocampus ; 29(1): 26-36, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207006

RESUMO

Mild cognitive impairment (MCI) is considered a prodromal stage of Alzheimer's disease (AD), but is also recognized to be a heterogeneous condition. Biomarkers that predict AD progression in MCI are of clinical significance because they can be used to better identify appropriate candidates for therapeutic intervention studies. It has been hypothesized that comparing to structural measurements, functional ones may be more sensitive to early disease abnormalities and the sensitivity could be further enhanced when combined with cognitive task, a "brain stress test." In this study, we investigated the value of regional cerebral blood flow (CBF), measured by arterial spin labeled perfusion MRI (ASL MRI) during a memory-encoding task, in predicting the estimated rate of hippocampal atrophy, an established marker of AD progression. Thirty-one amnestic MCI patients (20 male and 11 female; age: 70.9 ± 6.5 years, range from 56 to 83 years; mini mental status examination: 27.8 ± 1.8) and 42 normal control subjects (13 male and 29 female; age: 70.6 ± 8.8 years, range from 55 to 88 years; mini mental status examination: 29.1 ± 1.2) were included in this study. We compared the predictive value of CBF during task to CBF during rest and structural volumetry. Both region-of-interest and voxelwise analyses showed that baseline CBF measurements during task (strongest effect in fusiform gyrus, region-of-interest analysis statistics: r = 0.56, p = .003), but not resting ASL MRI or structural volumetry, were correlated with the estimated rate of hippocampal atrophy in amnestic MCI patients. Further, stepwise linear regression demonstrated that resting ASL MRI and volumetry did not provide complementary information in prediction. These results support the notion that physiologic measures during a cognitive challenge may increase the ability to detect subtle functional changes that predict progression. As such, ASL MRI could have important utility in stratifying candidates for AD treatment trials.


Assuntos
Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Marcadores de Spin , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/psicologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/psicologia , Valor Preditivo dos Testes
12.
Hum Brain Mapp ; 38(10): 5260-5273, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28737289

RESUMO

We compared three implementations of single-shot arterial spin labeled (ASL) perfusion magnetic resonance imaging: two-dimensional (2D) pulsed ASL (PASL), 2D pseudocontinuous ASL (PCASL), and background-suppressed (BS) 3D PCASL obtained in a cohort of patients with mild cognitive impairment (MCI) and elderly controls. Study subjects also underwent 18 F-fluorodeoxyglucose positron emission tomography (18 F-FDG PET). While BS 3D PCASL showed the lowest (P < 0.001) gray matter-white matter cerebral blood flow (CBF) contrast ratio, it provided the highest (P < 0.001) temporal signal-to-noise ratio. Mean relative CBF estimated using the PCASL methods in posterior cingulate cortex (PCC), precuneus, and hippocampus showed hypoperfusion in the MCI cohort compared to the controls consistent with hypometabolism measured by 18 F-FDG PET. BS 3D PCASL demonstrated the highest discrimination between controls and patients with effect size comparable to that seen with 18 F-FDG PET. 2D PASL did not demonstrate group differentiation with relative CBF in any ROI, whereas 2D PCASL demonstrated significant differences only in PCC and hippocampus. Mean global CBF values did not differ across methods and were highly correlated; however, the correlations were significantly higher (P < 0.001) when either the same labeling (PCASL) or the same acquisition strategy (2D) was used as compared to when both the labeling and readout methods differed. In addition, there were differences in regional distribution of CBF between the three modalities, which can be attributed to differences in sequence parameters. These results demonstrate the superiority of ASL with PCASL and BS 3D readout as a biomarker for regional brain function changes in MCI. Hum Brain Mapp 38:5260-5273, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idoso , Encéfalo/metabolismo , Mapeamento Encefálico , Disfunção Cognitiva/metabolismo , Estudos de Coortes , Escolaridade , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento Tridimensional , Masculino , Entrevista Psiquiátrica Padronizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
13.
J Magn Reson Imaging ; 45(6): 1786-1797, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27570967

RESUMO

PURPOSE: To propose and validate Structural Correlation-based Outlier REjection (SCORE), a novel algorithm for removal of artifacts arising from outlier control-label pairs in 2D arterial spin labeling (ASL) data. MATERIALS AND METHODS: The proposed method was assessed with respect to other state-of-the-art ASL signal processing approaches using 2D pulsed ASL data obtained with a 3T Siemens scanner from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Longitudinal data from control participants acquired 3 months apart were used to assess within-subject coefficient of variation (wsCV) based on the assumption that the optimal signal processing strategy will minimize control subject retest variability in Cerebral Blood Flow (CBF). SCORE was further evaluated by determining its sensitivity for distinguishing patients with Alzheimer's disease (AD) from controls based on hypoperfusion in predefined regions of interest (ROIs) that are known to be sensitive to AD-related changes. RESULTS: SCORE coupled with a preprocessing step to discard a few extreme outliers (combined algorithm referred to as SCORE+) reduced wsCV up to 21% in gray matter and 39% in smaller ROIs compared to the reference algorithms. It also provided an average increase in effect size for patient-control differences of 50% compared to other algorithms in a priori ROIs sensitive to AD-related changes. This increase was statistically significant (P < 0.05) for the majority of the ROIs and methods as evaluated by permutation tests. CONCLUSION: CBF maps generated with SCORE or SCORE + provide improved retest reliability in control subjects while simultaneously increasing sensitivity to pathological CBF effects between controls and patients. J. Magn. Reson. Imaging 2016 Level of Evidence: 2 J. MAGN. RESON. IMAGING 2017;45:1786-1797.


Assuntos
Algoritmos , Doença de Alzheimer/diagnóstico por imagem , Artefatos , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Idoso , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
14.
Neurobiol Aging ; 135: 79-90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262221

RESUMO

We used indirect brain mapping with virtual lesion tractography to test the hypothesis that the extent of white matter tract disconnection due to white matter hyperintensities (WMH) is associated with corresponding tract-specific cognitive performance decrements. To estimate tract disconnection, WMH masks were extracted from FLAIR MRI data of 481 cognitively intact participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used as regions of avoidance for fiber tracking in diffusion MRI data from 50 healthy young participants from the Human Connectome Project. Estimated tract disconnection in the right inferior fronto-occipital fasciculus, right frontal aslant tract, and right superior longitudinal fasciculus mediated the effects of WMH volume on executive function. Estimated tract disconnection in the left uncinate fasciculus mediated the effects of WMH volume on memory and in the right frontal aslant tract on language. In a subset of ADNI control participants with amyloid data, positive status increased the probability of periventricular WMH and moderated the relationship between WMH burden and tract disconnection in executive function performance.


Assuntos
Doença de Alzheimer , Conectoma , Substância Branca , Humanos , Doença de Alzheimer/patologia , Substância Branca/patologia , Cognição , Neuroimagem , Imageamento por Ressonância Magnética/métodos
15.
Neuroimage Clin ; 37: 103344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36804686

RESUMO

Traumatic brain injury (TBI) is associated with alterations in cerebral blood flow (CBF), which may underlie functional disability and precipitate TBI-induced neurodegeneration. Although it is known that chronic moderate-severe TBI (msTBI) causes decreases in CBF, the temporal dynamics during the early chronic phase of TBI remain unknown. Using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI), we examined longitudinal CBF changes in 29 patients with msTBI at 3, 6, and 12 months post-injury in comparison to 35 demographically-matched healthy controls (HC). We investigated the difference between the two groups and the within-subject time effect in the TBI patients using whole-brain voxel-wise analysis. Mean CBF in gray matter (GM) was lower in the TBI group compared to HC at 6 and 12 months post-injury. Within the TBI group, we identified widespread regional decreases in CBF from 3 to 6 months post-injury. In contrast, there were no regions with decreasing CBF from 6 to 12 months post-injury, indicating stabilization of hypoperfusion. There was instead a small area of increase in CBF observed in the right precuneus. These CBF changes were not accompanied by cortical atrophy. The change in CBF was correlated with change in executive function from 3 to 6 months post-injury in TBI patients, suggesting functional relevance of CBF measures. Understanding the time course of TBI-induced hypoperfusion and its relationship with cognitive improvement could provide an optimal treatment window to benefit long-term outcome.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Encefálica Crônica , Humanos , Angiografia por Ressonância Magnética/métodos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Perfusão , Imageamento por Ressonância Magnética/métodos
16.
JAMA Netw Open ; 6(3): e231055, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857053

RESUMO

Importance: Little is known about the associations of strict blood pressure (BP) control with microstructural changes in small vessel disease markers. Objective: To investigate the regional associations of intensive vs standard BP control with small vessel disease biomarkers, such as white matter lesions (WMLs), fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF). Design, Setting, and Participants: The Systolic Blood Pressure Intervention Trial (SPRINT) is a multicenter randomized clinical trial that compared intensive systolic BP (SBP) control (SBP target <120 mm Hg) vs standard control (SBP target <140 mm Hg) among participants aged 50 years or older with hypertension and without diabetes or a history of stroke. The study began randomization on November 8, 2010, and stopped July 1, 2016, with a follow-up duration of approximately 4 years. A total of 670 and 458 participants completed brain magnetic resonance imaging at baseline and follow-up, respectively, and comprise the cohort for this post hoc analysis. Statistical analyses for this post hoc analysis were performed between August 2020 and October 2022. Interventions: At baseline, 355 participants received intensive SBP treatment and 315 participants received standard SBP treatment. Main Outcomes and Measures: The main outcomes were regional changes in WMLs, FA, MD (in white matter regions of interest), and CBF (in gray matter regions of interest). Results: At baseline, 355 participants (mean [SD] age, 67.7 [8.0] years; 200 men [56.3%]) received intensive BP treatment and 315 participants (mean [SD] age, 67.0 [8.4] years; 199 men [63.2%]) received standard BP treatment. Intensive treatment was associated with smaller mean increases in WML volume compared with standard treatment (644.5 mm3 vs 1258.1 mm3). The smaller mean increases were observed specifically in the deep white matter regions of the left anterior corona radiata (intensive treatment, 30.3 mm3 [95% CI, 16.0-44.5 mm3]; standard treatment, 80.5 mm3 [95% CI, 53.8-107.2 mm3]), left tapetum (intensive treatment, 11.8 mm3 [95% CI, 4.4-19.2 mm3]; standard treatment, 27.2 mm3 [95% CI, 19.4-35.0 mm3]), left superior fronto-occipital fasciculus (intensive treatment, 3.2 mm3 [95% CI, 0.7-5.8 mm3]; standard treatment, 9.4 mm3 [95% CI, 5.5-13.4 mm3]), left posterior corona radiata (intensive treatment, 26.0 mm3 [95% CI, 12.9-39.1 mm3]; standard treatment, 52.3 mm3 [95% CI, 34.8-69.8 mm3]), left splenium of the corpus callosum (intensive treatment, 45.4 mm3 [95% CI, 25.1-65.7 mm3]; standard treatment, 83.0 mm3 [95% CI, 58.7-107.2 mm3]), left posterior thalamic radiation (intensive treatment, 53.0 mm3 [95% CI, 29.8-76.2 mm3]; standard treatment, 106.9 mm3 [95% CI, 73.4-140.3 mm3]), and right posterior thalamic radiation (intensive treatment, 49.5 mm3 [95% CI, 24.3-74.7 mm3]; standard treatment, 102.6 mm3 [95% CI, 71.0-134.2 mm3]). Conclusions and Relevance: This study suggests that intensive BP treatment, compared with standard treatment, was associated with a slower increase of WMLs, improved diffusion tensor imaging, and FA and CBF changes in several brain regions that represent vulnerable areas that may benefit from more strict BP control. Trial Registration: ClinicalTrials.gov Identifier: NCT01206062.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Masculino , Humanos , Idoso , Pressão Sanguínea , Imagem de Tensor de Difusão , Biomarcadores
17.
JAMA Netw Open ; 5(9): e2231189, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094503

RESUMO

Importance: Decreased cerebral tissue integrity and cerebral blood flow (CBF) are features of neurodegenerative diseases. Brain tissue maintenance is an energy-demanding process, making it particularly sensitive to hypoperfusion. However, little is known about the association between blood flow and brain microstructural integrity, including in normative aging. Objective: To assess associations between CBF and changes in cerebral tissue integrity in white matter and gray matter brain regions. Design, Setting, and Participants: In this longitudinal cohort study, magnetic resonance imaging was performed on 732 healthy adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective longitudinal study (baseline age of 18-30 years) that examined participants up to 8 times during 30 years (1985-1986 to 2015-2016). Cerebral blood flow was measured at baseline (year 25 of the CARDIA study), and changes in diffusion tensor indices of fractional anisotropy (FA) and mean diffusivity (MD), measures of microstructural tissue integrity, were measured at both baseline and after approximately 5 years of follow-up (year 30). Analyses were conducted from November 5, 2020, to January 29, 2022. Main Outcomes and Measures: Automated algorithms and linear mixed-effects statistical models were used to evaluate the associations between CBF at baseline and changes in FA or MD. Results: After exclusion of participants with missing or low-quality data, 654 at baseline (342 women; mean [SD] age, 50.3 [3.5] years) and 433 at follow-up (230 women; mean [SD] age, 55.1 [3.5] years) were scanned for CBF or FA and MD imaging. In the baseline cohort, 247 participants were Black (37.8%) and 394 were White (60.2%); in the follow-up cohort, 156 were Black (36.0%) and 277 were White (64.0%). Cross-sectionally, FA and MD were associated with CBF in most regions evaluated, with lower CBF values associated with lower FA or higher MD values, including the frontal white matter lobes (for CBF and MD: mean [SE] ß = -1.4 [0.5] × 10-6; for CBF and FA: mean [SE] ß = 2.9 [1.0] × 10-4) and the parietal white matter lobes (for CBF and MD: mean [SE] ß = -2.4 [0.6] × 10-6; for CBF and FA: mean [SE] ß = 4.4 [1.1] × 10-4). Lower CBF values at baseline were also significantly associated with steeper regional decreases in FA or increases in MD in most brain regions investigated, including the frontal (for CBF and MD: mean [SE] ß = -1.1 [0.6] × 10-6; for CBF and FA: mean [SE] ß = 2.9 [1.0] × 10-4) and parietal lobes (for CBF and MD: mean [SE] ß = -1.5 [0.7] × 10-6; for CBF and FA: mean [SE] ß = 4.4 [1.1] × 10-4). Conclusions and Relevance: Results of this longitudinal cohort study of the association between CBF and diffusion tensor imaging metrics suggest that blood flow may be significantly associated with brain tissue microstructure. This work may lay the foundation for investigations to clarify the nature of early brain damage in neurodegeneration. Such studies may lead to new neuroimaging biomarkers of brain microstructure and function for disease progression.


Assuntos
Vasos Coronários , Imagem de Tensor de Difusão , Adolescente , Adulto , Circulação Cerebrovascular/fisiologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
18.
Front Radiol ; 2: 929533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37492666

RESUMO

Arterial spin labeling (ASL) is a non-invasive and cost-effective MRI technique for brain perfusion measurements. While it has developed into a robust technique for scientific and clinical use, its image processing can still be daunting. The 2019 Ann Arbor ISMRM ASL working group established that education is one of the main areas that can accelerate the use of ASL in research and clinical practice. Specifically, the post-acquisition processing of ASL images and their preparation for region-of-interest or voxel-wise statistical analyses is a topic that has not yet received much educational attention. This educational review is aimed at those with an interest in ASL image processing and analysis. We provide summaries of all typical ASL processing steps on both single-subject and group levels. The readers are assumed to have a basic understanding of cerebral perfusion (patho) physiology; a basic level of programming or image analysis is not required. Starting with an introduction of the physiology and MRI technique behind ASL, and how they interact with the image processing, we present an overview of processing pipelines and explain the specific ASL processing steps. Example video and image illustrations of ASL studies of different cases, as well as model calculations, help the reader develop an understanding of which processing steps to check for their own analyses. Some of the educational content can be extrapolated to the processing of other MRI data. We anticipate that this educational review will help accelerate the application of ASL MRI for clinical brain research.

19.
JAMA Neurol ; 79(4): 380-389, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254390

RESUMO

IMPORTANCE: Antihypertensive treatments benefit cerebrovascular health and cognitive function in patients with hypertension, but it is uncertain whether an intensive blood pressure target leads to potentially harmful cerebral hypoperfusion. OBJECTIVE: To investigate the association of intensive systolic blood pressure (SBP) control vs standard control with whole-brain cerebral blood flow (CBF). DESIGN, SETTING, AND PARTICIPANTS: This substudy of the Systolic Blood Pressure Intervention Trial (SPRINT) randomized clinical trial compared the efficacy of 2 different blood pressure-lowering strategies with longitudinal brain magnetic resonance imaging (MRI) including arterial spin labeled perfusion imaging to quantify CBF. A total of 1267 adults 50 years or older with hypertension and increased cardiovascular risk but free of diabetes or dementia were screened for the SPRINT substudy from 6 sites in the US. Randomization began in November 2010 with final follow-up MRI in July 2016. Analyses were performed from September 2020 through December 2021. INTERVENTIONS: Study participants with baseline CBF measures were randomized to an intensive SBP target less than 120 mm Hg or standard SBP target less than 140 mm Hg. MAIN OUTCOMES AND MEASURES: The primary outcome was change in whole-brain CBF from baseline. Secondary outcomes were change in gray matter, white matter, and periventricular white matter CBF. RESULTS: Among 547 participants with CBF measured at baseline, the mean (SD) age was 67.5 (8.1) years and 219 (40.0%) were women; 315 completed follow-up MRI at a median (IQR) of 4.0 (3.7-4.1) years after randomization. Mean whole-brain CBF increased from 38.90 to 40.36 (difference, 1.46 [95% CI, 0.08-2.83]) mL/100 g/min in the intensive treatment group, with no mean increase in the standard treatment group (37.96 to 37.12; difference, -0.84 [95% CI, -2.30 to 0.61] mL/100 g/min; between-group difference, 2.30 [95% CI, 0.30-4.30; P = .02]). Gray, white, and periventricular white matter CBF showed similar changes. The association of intensive vs standard treatment with CBF was generally similar across subgroups defined by age, sex, race, chronic kidney disease, SBP, orthostatic hypotension, and frailty, with the exception of an indication of larger mean increases in CBF associated with intensive treatment among participants with a history of cardiovascular disease (interaction P = .05). CONCLUSIONS AND RELEVANCE: Intensive vs standard antihypertensive treatment was associated with increased, rather than decreased, cerebral perfusion, most notably in participants with a history of cardiovascular disease. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01206062.


Assuntos
Doenças Cardiovasculares , Hipertensão , Idoso , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular , Feminino , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico por imagem , Hipertensão/tratamento farmacológico
20.
Cereb Circ Cogn Behav ; 2: 100022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36324715

RESUMO

We used a virtual lesion DTI fiber tracking approach with healthy subject DTI data and simulated periventricular white matter (PVWM) lesion masks to predict the sequence of connectivity changes associated with progressive PVWM ischemia. We found that the optic radiations, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, corpus callosum, temporopontine tract and fornix were affected in early simulated ischemic injury, and that the connectivity of subcortical, cerebellar, and visual regions were significantly disrupted with increasing simulated lesion severity. The results of this study provide insights into the spatial-temporal changes of the brain structural connectome under progressive PVWM ischemia. The virtual lesion approach provides a meaningful proxy to the spatial-temporal changes of the brain's structural connectome and can be used to further characterize the cognitive sequelae of progressive PVWM ischemia in both normal aging and dementia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA