Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Biol Chem ; 296: 100586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33774050

RESUMO

Previous work has suggested that highly positively charged protein segments coded by rare codons or poly (A) stretches induce ribosome stalling and translational arrest through electrostatic interactions with the negatively charged ribosome exit tunnel, leading to inefficient elongation. This arrest leads to the activation of the Ribosome Quality Control (RQC) pathway and results in low expression of these reporter proteins. However, the only endogenous yeast proteins known to activate the RQC are Rqc1, a protein essential for RQC function, and Sdd1, a protein with unknown function, both of which contain polybasic sequences. To explore the generality of this phenomenon, we investigated whether the RQC complex controls the expression of other proteins with polybasic sequences. We showed by ribosome profiling data analysis and western blot that proteins containing polybasic sequences similar to, or even more positively charged than those of Rqc1 and Sdd1, were not targeted by the RQC complex. We also observed that the previously reported Ltn1-dependent regulation of Rqc1 is posttranslational, independent of the RQC activity. Taken together, our results suggest that RQC should not be regarded as a general regulatory pathway for the expression of highly positively charged proteins in yeast.


Assuntos
Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Expressão Gênica , Ligação Proteica , Saccharomyces cerevisiae/genética
2.
Arch Virol ; 166(6): 1547-1563, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683475

RESUMO

Virus maturation is found in all animal viruses and dsDNA bacteriophages that have been studied. It is a programmed process, cued by cellular environmental factors, that transitions a noninfectious, initial assembly product (provirus) to an infectious particle (virion). Nudaurelia capensis omega virus (NωV) is an ssRNA insect virus with T=4 quasi-symmetry. Over the last 20 years, NωV virus-like particles (VLPs) have been an attractive model for the detailed study of maturation. The novel feature of the system is the progressive transition from procapsid to capsid controlled by pH. Homogeneous populations of maturation intermediates can be readily produced at arbitrary intervals by adjusting the pH between 7.6 and 5.0. These intermediates were investigated using biochemical and biophysical methods to create a stop-frame transition series of this complex process. The studies reviewed here characterized the large-scale subunit reorganization during maturation (the particle changes size from 48 nm to 41 nm) as well as the mechanism of a maturation cleavage, a time-resolved study of cleavage site formation, and specific roles of quasi-equivalent subunits in the release of membrane lytic peptides required for cellular entry.


Assuntos
Vírus de RNA/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Vírus de RNA/genética , Proteínas Virais/genética
3.
RNA Biol ; 18(10): 1374-1381, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33258390

RESUMO

We investigated the gene-expression variation among humans by analysing previously published mRNA-seq and ribosome footprint profiling of heart left-ventricles from healthy donors. We ranked the genes according to their coefficient of variation values and found that the top 5% most variable genes had special features compared to the rest of the genome, such as lower mRNA levels and shorter half-lives coupled to increased translation efficiency. We observed that these genes are mostly involved with immune response and have a pleiotropic effect on disease phenotypes, indicating that asymptomatic conditions contribute to the gene expression diversity of healthy individuals.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Miocárdio/química , Bases de Dados Genéticas , Regulação da Expressão Gênica , Humanos , Análise de Sequência de RNA
4.
Biochem J ; 477(15): 2921-2934, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32797214

RESUMO

Protein segments with a high concentration of positively charged amino acid residues are often used in reporter constructs designed to activate ribosomal mRNA/protein decay pathways, such as those involving nonstop mRNA decay (NSD), no-go mRNA decay (NGD) and the ribosome quality control (RQC) complex. It has been proposed that the electrostatic interaction of the positively charged nascent peptide with the negatively charged ribosomal exit tunnel leads to translation arrest. When stalled long enough, the translation process is terminated with the degradation of the transcript and an incomplete protein. Although early experiments made a strong argument for this mechanism, other features associated with positively charged reporters, such as codon bias and mRNA and protein structure, have emerged as potent inducers of ribosome stalling. We carefully reviewed the published data on the protein and mRNA expression of artificial constructs with diverse compositions as assessed in different organisms. We concluded that, although polybasic sequences generally lead to lower translation efficiency, it appears that an aggravating factor, such as a nonoptimal codon composition, is necessary to cause translation termination events.


Assuntos
Biossíntese de Proteínas/fisiologia , Sequência de Bases , Códon , Humanos , Poli A/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
5.
Nucleic Acids Res ; 47(5): 2216-2228, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30698781

RESUMO

The codon stabilization coefficient (CSC) is derived from the correlation between each codon frequency in transcripts and mRNA half-life experimental data. In this work, we used this metric as a reference to compare previously published Saccharomyces cerevisiae mRNA half-life datasets and investigate how codon composition related to protein levels. We generated CSCs derived from nine studies. Four datasets produced similar CSCs, which also correlated with other independent parameters that reflected codon optimality, such as the tRNA abundance and ribosome residence time. By calculating the average CSC for each gene, we found that most mRNAs tended to have more non-optimal codons. Conversely, a high proportion of optimal codons was found for genes coding highly abundant proteins, including proteins that were only transiently overexpressed in response to stress conditions. We also used CSCs to identify and locate mRNA regions enriched in non-optimal codons. We found that these stretches were usually located close to the initiation codon and were sufficient to slow ribosome movement. However, in contrast to observations from reporter systems, we found no position-dependent effect on the mRNA half-life. These analyses underscore the value of CSCs in studies of mRNA stability and codon bias and their relationships with protein expression.


Assuntos
Códon/genética , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Bases , Conjuntos de Dados como Assunto , Genes Fúngicos/genética , Genoma Fúngico/genética , Meia-Vida , Biossíntese de Proteínas/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
6.
RNA Biol ; 16(12): 1806-1816, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470761

RESUMO

Translation initiation is a critical step in the regulation of protein synthesis, and it is subjected to different control mechanisms, such as 5' UTR secondary structure and initiation codon context, that can influence the rates at which initiation and consequentially translation occur. For some genes, translation elongation also affects the rate of protein synthesis. With a GFP library containing nearly all possible combinations of nucleotides from the 3rd to the 5th codon positions in the protein coding region of the mRNA, it was previously demonstrated that some nucleotide combinations increased GFP expression up to four orders of magnitude. While it is clear that the codon region from positions 3 to 5 can influence protein expression levels of artificial constructs, its impact on endogenous proteins is still unknown. Through bioinformatics analysis, we identified the nucleotide combinations of the GFP library in Escherichia coli genes and examined the correlation between the expected levels of translation according to the GFP data with the experimental measures of protein expression. We observed that E. coli genes were enriched with the nucleotide compositions that enhanced protein expression in the GFP library, but surprisingly, it seemed to affect the translation efficiency only marginally. Nevertheless, our data indicate that different enterobacteria present similar nucleotide composition enrichment as E. coli, suggesting an evolutionary pressure towards the conservation of short translational enhancer sequences.


Assuntos
Códon/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Iniciação Traducional da Cadeia Peptídica , Regiões 5' não Traduzidas , Sequência de Bases , Evolução Biológica , Códon/química , Biologia Computacional/métodos , Elementos Facilitadores Genéticos , Escherichia coli/metabolismo , Biblioteca Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Fases de Leitura Aberta , Ribossomos/genética , Ribossomos/metabolismo
7.
PLoS Comput Biol ; 13(5): e1005549, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28531225

RESUMO

As proteins are synthesized, the nascent polypeptide must pass through a negatively charged exit tunnel. During this stage, positively charged stretches can interact with the ribosome walls and slow the translation. Therefore, charged polypeptides may be important factors that affect protein expression. To determine the frequency and distribution of positively and negatively charged stretches in different proteomes, the net charge was calculated for every 30 consecutive amino acid residues, which corresponds to the length of the ribosome exit tunnel. The following annotated and reviewed proteins in the UniProt database (Swiss-Prot) were analyzed: 551,705 proteins from different organisms and a total of 180 million protein segments. We observed that there were more negative than positive stretches and that super-charged positive sequences (i.e., net charges ≥ 14) were underrepresented in the proteomes. Overall, the proteins were more positively charged at their N-termini and C-termini, and this feature was present in most organisms and subcellular localizations. To investigate whether the N-terminal charges affect the elongation rates, previously published ribosomal profiling data obtained from S. cerevisiae, without translation-interfering drugs, were analyzed. We observed a nonlinear effect of the charge on the ribosome occupancy in which values ≥ +5 and ≤ -6 showed increased and reduced ribosome densities, respectively. These groups also showed different distributions across 80S monosomes and polysomes. Basic polypeptides are more common within short proteins that are translated by monosomes, whereas negative stretches are more abundant in polysome-translated proteins. These findings suggest that the nascent peptide charge impacts translation and can be one of the factors that regulate translation efficiency and protein expression.


Assuntos
Aminoácidos/química , Biossíntese de Proteínas/fisiologia , Proteínas/química , Proteoma/química , Ribossomos/metabolismo , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Bioconjug Chem ; 28(1): 64-74, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28001371

RESUMO

We describe a new quantum dot (QD)-conjugate prepared with a lytic peptide, derived from a nonenveloped virus capsid protein, capable of bypassing the endocytotic pathways and delivering large amounts of QDs to living cells. The polypeptide, derived from the Nudaurelia capensis Omega virus, was fused onto the C-terminus of maltose binding protein that contained a hexa-HIS tag at its N-terminus, allowing spontaneous self-assembly of controlled numbers of the fusion protein per QD via metal-HIS interactions. We found that the efficacy of uptake by several mammalian cell lines was substantial even for small concentrations (10-100 nM). Upon internalization the QDs were primarily distributed outside the endosomes/lysosomes. Moreover, when cells were incubated with the conjugates at 4 °C, or in the presence of chemical endocytic inhibitors, significant intracellular uptake continued to occur. These findings indicate an entry mechanism that does not involve endocytosis, but rather the perforation of the cell membrane by the lytic peptide on the QD surfaces.


Assuntos
Peptídeos/administração & dosagem , Pontos Quânticos/administração & dosagem , Proteínas Virais/química , Animais , Linhagem Celular , Endossomos/metabolismo , Citometria de Fluxo , Humanos , Luminescência , Lisossomos/metabolismo , Peptídeos/química , Pontos Quânticos/metabolismo
10.
Genet Mol Biol ; 40(1 suppl 1): 253-260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28199445

RESUMO

Regulation of protein stability and/or degradation of misfolded and damaged proteins are essential cellular processes. A part of this regulation is mediated by the so-called N-end rule proteolytic pathway, which, in concert with the ubiquitin proteasome system (UPS), drives protein degradation depending on the N-terminal amino acid sequence. One important enzyme involved in this process is arginyl-t-RNA transferase, known as ATE. This enzyme acts post-translationally by introducing an arginine residue at the N-terminus of specific protein targets to signal degradation via the UPS. However, the function of ATEs has only recently begun to be revealed. Nonetheless, the few studies to date investigating ATE activity in plants points to the great importance of the ATE/N-end rule pathway in regulating plant signaling. Plant development, seed germination, leaf morphology and responses to gas signaling in plants are among the processes affected by the ATE/N-end rule pathway. In this review, we present some of the known biological functions of plant ATE proteins, highlighting the need for more in-depth studies on this intriguing pathway.

11.
RNA Biol ; 13(6): 561-8, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064519

RESUMO

It has been proposed that polybasic peptides cause slower movement of ribosomes through an electrostatic interaction with the highly negative ribosome exit tunnel. Ribosome profiling data-the sequencing of short ribosome-bound fragments of mRNA-is a powerful tool for the analysis of mRNA translation. Using the yeast Saccharomyces cerevisiae as a model, we showed that reduced translation efficiency associated with polybasic protein sequences could be inferred from ribosome profiling. However, an increase in ribosome density at polybasic sequences was evident only when the commonly used translational inhibitors cycloheximide and anisomycin were omitted during mRNA isolation. Since ribosome profiling performed without inhibitors agrees with experimental evidence obtained by other methods, we conclude that cycloheximide and anisomycin must be avoided in ribosome profiling experiments.


Assuntos
RNA Mensageiro/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA/métodos , Biossíntese de Proteínas , Inibidores da Síntese de Proteínas/farmacologia , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(6): 1907-12, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308402

RESUMO

Next-generation sequencing is a valuable tool in our growing understanding of the genetic diversity of viral populations. Using this technology, we have investigated the RNA content of a purified nonenveloped single-stranded RNA virus, flock house virus (FHV). We have also investigated the RNA content of virus-like particles (VLPs) of FHV and the related Nudaurelia capensis omega virus. VLPs predominantly package ribosomal RNA and transcripts of their baculoviral expression vectors. In addition, we find that 5.3% of the packaged RNAs are transposable elements derived from the Sf21 genome. This observation may be important when considering the therapeutic use of VLPs. We find that authentic FHV virions also package a variety of host RNAs, accounting for 1% of the packaged nucleic acid. Significant quantities of host messenger RNAs, ribosomal RNA, noncoding RNAs, and transposable elements are readily detected. The packaging of these host RNAs elicits the possibility of horizontal gene transfer between eukaryotic hosts that share a viral pathogen. We conclude that the genetic content of nonenveloped RNA viruses is variable, not just by genome mutation, but also in the diversity of RNA transcripts that are packaged.


Assuntos
Capsídeo/metabolismo , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Interações Hospedeiro-Patógeno/genética , Vírus de RNA/genética , RNA Viral/genética , Animais , Capsídeo/ultraestrutura , Linhagem Celular , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Taxa de Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de RNA , Vírion/ultraestrutura , Montagem de Vírus/genética
13.
Biopolymers ; 102(6): 456-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25283273

RESUMO

Psd1 is a plant defensin that has antifungal activity against several pathogenic and nonpathogenic fungi. Previous analysis of Psd1 chemical shift perturbations by nuclear magnetic resonance (NMR) spectroscopy demonstrated that this defensin interacts with phospholipids and the sphingolipid glucosylceramide isolated from Fusarium solani (GlcCer(Fusarium solani)). In this study, these interactions were evaluated by real-time surface plasmon resonance (SPR) analysis. The data obtained demonstrated that Psd1 could bind more strongly to small unilamellar vesicles (SUV)-containing GlcCer(Fusarium solani) than to SUV that was composed of phosphatidylcholine (PC) alone or was enriched with GlcCer that had been isolated from soybeans. An increase in the SPR response after cholesterol or ergosterol incorporation in PC-SUV was detected; however, SUV composed of PC:Erg (7:3; molar:molar) became unstable in the presence of Psd1, suggesting membrane destabilization. We also observed a lack of Psd1 internalization in Candida albicans strains that were deficient in the glucosyl ceramide synthase gene. Together, these data indicate that GlcCer is essential for Psd1 anchoring in the fungal plasma membrane as well as internalization.


Assuntos
Candida albicans/fisiologia , Defensinas/metabolismo , Glucosilceramidas/metabolismo , Lipossomos/metabolismo , Proteínas de Plantas/metabolismo , Ressonância de Plasmônio de Superfície , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Defensinas/farmacologia , Endocitose/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Microscopia Confocal , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/farmacologia
14.
Sci Rep ; 14(1): 1439, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228636

RESUMO

During protein synthesis, organisms detect translation defects that induce ribosome stalling and result in protein aggregation. The Ribosome-associated Quality Control (RQC) complex, comprising TCF25, LTN1, and NEMF, is responsible for identifying incomplete protein products from unproductive translation events, targeting them for degradation. Although RQC disruption causes adverse effects on vertebrate neurons, data regarding mRNA/protein expression and regulation across tissues are lacking. Employing high-throughput methods, we analyzed public datasets to explore RQC gene expression and phenotypes. Our findings revealed widespread expression of RQC components in human tissues; however, silencing of RQC yielded only mild negative effects on cell growth. Notably, TCF25 exhibited elevated mRNA levels that were not reflected in the protein content. We experimentally demonstrated that this disparity arose from post-translational protein degradation by the proteasome. Additionally, we observed that cellular aging marginally influenced RQC expression, leading to reduced mRNA levels in specific tissues. Our results suggest the necessity of RQC expression in all mammalian tissues. Nevertheless, when RQC falters, alternative mechanisms seem to compensate, ensuring cell survival under nonstress conditions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Biossíntese de Proteínas , Ubiquitinação , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mamíferos/metabolismo
15.
J Struct Biol ; 181(3): 195-206, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246781

RESUMO

CryoEM data capture the dynamic character associated with biological macromolecular assemblies by preserving the various conformations of the individual specimens at the moment of flash freezing. Regions of high variation in the data set are apparent in the image reconstruction due to the poor density that results from the lack of superposition of these regions. These observations are qualitative and, to date, only preliminary efforts have been made to quantitate the heterogeneity in the ensemble of particles that are individually imaged. We developed and tested a quantitative method for simultaneously computing a reconstruction of the particle and a map of the space-varying heterogeneity of the particle based on an entire data set. The method uses a maximum likelihood algorithm that explicitly takes into account the continuous variability from one instance to another instance of the particle. The result describes the heterogeneity of the particle as a variance to be plotted at every voxel of the reconstructed density. The test, employing time resolved data sets of virus maturation, not only recapitulated local variations obtained with difference map analysis, but revealed a remarkable time dependent reduction in the overall particle dynamics that was unobservable with classical methods of analysis.


Assuntos
Microscopia Crioeletrônica , Funções Verossimilhança , Algoritmos , Biologia Computacional
16.
J Virol ; 86(18): 9976-82, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761380

RESUMO

Nonenveloped viruses often invade membranes by exposing hydrophobic or amphipathic peptides generated by a proteolytic maturation step that leaves a lytic peptide noncovalently associated with the viral capsid. Since multiple copies of the same protein form many nonenveloped virus capsids, it is unclear if lytic peptides derived from subunits occupying different positions in a quasi-equivalent icosahedral capsid play different roles in host infection. We addressed this question with Nudaurelia capensis omega virus (NωV), an insect RNA virus with an icosahedral capsid formed by protein α, which undergoes autocleavage during maturation, producing the lytic γ peptide. NωV is a unique model because autocatalysis can be precisely initiated in vitro and is sufficiently slow to correlate lytic activity with γ peptide production. Using liposome-based assays, we observed that autocatalysis is essential for the potent membrane disruption caused by NωV. We observed that lytic activity is acquired rapidly during the maturation program, reaching 100% activity with less than 50% of the subunits cleaved. Previous time-resolved structural studies of partially mature NωV particles showed that, during this time frame, γ peptides derived from the pentamer subunits are produced and are organized in a vertical helical bundle that is projected toward the particle surface, while identical polypeptides in quasi-equivalent subunits are produced later or are in positions inappropriate for release. Our functional data provide experimental support for the hypothesis that pentamers containing a central helical bundle, observed in different nonenveloped virus families, are a specialized lytic motif.


Assuntos
Vírus de Insetos/química , Vírus de Insetos/fisiologia , Vírus de RNA/química , Vírus de RNA/fisiologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/fisiologia , Linhagem Celular , Concentração de Íons de Hidrogênio , Vírus de Insetos/genética , Lipossomos , Membranas Artificiais , Modelos Moleculares , Dados de Sequência Molecular , Nodaviridae/química , Nodaviridae/genética , Nodaviridae/fisiologia , Estrutura Quaternária de Proteína , Subunidades Proteicas , Vírus de RNA/genética , Montagem de Vírus/fisiologia
17.
Exp Clin Cardiol ; 17(3): 101-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23620696

RESUMO

Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models.

18.
Comput Struct Biotechnol J ; 19: 6255-6262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35024090

RESUMO

Defensins are small proteins, usually ranging from 3 to 6 kDa, amphipathic, disulfide-rich, and with a small or even absent hydrophobic core. Since a hydrophobic core is generally found in globular proteins that fold in an aqueous solvent, the peculiar fold of defensins can challenge tertiary protein structure predictors. We performed a Protein Data Bank survey of small proteins (3-6 kDa) to understand the similarities of defensins with other small disulfide-rich proteins. We found no differences when we compared defensins with non-defensins regarding the proportion of apolar, polar and charged residues and their exposure to the solvent. Then we divided all small proteins (3-6 kDa) in the Protein Data Bank into two groups, one group with at least one disulfide bond (bonded, defensins included) and another group without any disulfide bond (unbonded). The group of bonded proteins contained apolar residues more exposed to the solvent than the unbonded group. The ab initio algorithm for tertiary protein structure prediction Robetta was more accurate at predicting unbonded than bonded proteins. On the other hand, the trRosetta algorithm, which uses artificial intelligence, improved the prediction of most bonded proteins, while for the unbonded group no improvement was obtained. Our work highlights one more layer of complexity for the prediction of protein tertiary structure: The ability of small disulfide-rich proteins to fold even with a poorly hydrophobic core.

19.
Commun Biol ; 4(1): 619, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031522

RESUMO

Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.


Assuntos
Proteínas do Capsídeo/metabolismo , Eucariotos/fisiologia , Nicotiana/virologia , Folhas de Planta/virologia , Vírus de RNA/fisiologia , Vírion/fisiologia , Montagem de Vírus , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Quaternária de Proteína
20.
Sci Rep ; 10(1): 5470, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214181

RESUMO

Capsid proteins often present a positively charged arginine-rich sequence at their terminal regions, which has a fundamental role in genome packaging and particle stability for some icosahedral viruses. These sequences show little to no conservation and are structurally dynamic such that they cannot be easily detected by common sequence or structure comparisons. As a result, the occurrence and distribution of positively charged domains across the viral universe are unknown. Based on the net charge calculation of discrete protein segments, we identified proteins containing amino acid stretches with a notably high net charge (Q > + 17), which are enriched in icosahedral viruses with a distinctive bias towards arginine over lysine. We used viral particle structural data to calculate the total electrostatic charge derived from the most positively charged protein segment of capsid proteins and correlated these values with genome charges arising from the phosphates of each nucleotide. We obtained a positive correlation (r = 0.91, p-value <0001) for a group of 17 viral families, corresponding to 40% of all families with icosahedral structures described to date. These data indicated that unrelated viruses with diverse genome types adopt a common underlying mechanism for capsid assembly based on R-arms.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral , Ácidos Nucleicos/metabolismo , Proteínas Virais/metabolismo , Vírus/genética , Vírus/metabolismo , Sequência de Aminoácidos , Nucleotídeos/metabolismo , Fosfatos/metabolismo , Domínios Proteicos , Eletricidade Estática , Vírion/metabolismo , Montagem de Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA