Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2403701, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148215

RESUMO

Targeting complementary pathways in diseases such as cancer can be achieved with co-delivery of small interfering ribonucleic acid (siRNA) and small molecule drugs; however, current formulation strategies are typically limited to one, but not both. Here, ionizable small molecule drugs and siRNA are co-formulated in drug-rich nanoparticles. Ionizable analogs of the selective estrogen receptor degrader fulvestrant self-assemble into colloidal drug aggregates and cause endosomal disruption, allowing co-delivery of siRNA against a non-druggable target. siRNA is encapsulated in lipid-stabilized, drug-rich colloidal nanoparticles where the ionizable lipid used in conventional lipid nanoparticles is replaced with an ionizable fulvestrant analog. The selection of an appropriate phospholipid and formulation buffer enables endocytosis and potent reporter gene knockdown in cancer cells. Importantly, siRNA targeting cyclin E1 is effectively delivered to drug-resistant breast cancer cells, demonstrating the utility of this approach. This strategy opens the possibility of using ionizable drugs to co-deliver RNA and ultimately improve therapeutic outcomes.

2.
Adv Sci (Weinh) ; 10(13): e2300311, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905240

RESUMO

Colloidal drug aggregates enable the design of drug-rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo-lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pKa of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH-dependent endosomal disruption while maintaining bioactivity. Lipid-stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pKa of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs-those with pKa values between 5.1 and 5.7-disrupted endo-lysosomes without measurable phospholipidosis. Thus, by manipulating the pKa of colloid-forming drugs, a tunable and generalizable strategy for endosomal disruption is established.


Assuntos
Coloides , Endossomos , Fulvestranto/metabolismo , Endossomos/metabolismo , Lisossomos
3.
ACS Chem Biol ; 14(7): 1507-1514, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31243955

RESUMO

Chemotherapeutics that self-assemble into colloids have limited efficacy above their critical aggregation concentration due to their inability to penetrate intact plasma membranes. Even when colloid uptake is promoted, issues with colloid escape from the endolysosomal pathway persist. By stabilizing acid-responsive lapatinib colloids through coaggregation with fulvestrant, and inclusion of transferrin, we demonstrate colloid internalization by cancer cells, where subsequent lapatinib ionization leads to endosomal leakage and increased cytotoxicity. These results demonstrate a strategy for triggered drug release from stable colloidal aggregates.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Coloides/química , Preparações de Ação Retardada/química , Fulvestranto/administração & dosagem , Antineoplásicos Hormonais/farmacocinética , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Endossomos/metabolismo , Fulvestranto/farmacocinética , Fulvestranto/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transferrina/química
4.
Nano Today ; 19: 188-200, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30250495

RESUMO

It is well known that small molecule colloidal aggregation is a leading cause of false positives in early drug discovery. Colloid-formers are diverse and well represented among corporate and academic screening decks, and even among approved drugs. Less appreciated is how colloid formation by drug-like compounds fits into the wider understanding of colloid physical chemistry. Here we introduce the impact that colloidal aggregation has had on early drug discovery, and then turn to the physical and thermodynamic driving forces for small molecule colloidal aggregation, including the particulate nature of the colloids, their critical aggregation concentration-governed formation, their mechanism of protein adsorption and subsequent inhibition, and their sensitivity to detergent. We describe methods that have been used extensively to both identify aggregate-formers and to study and control their physical chemistry. While colloidal aggregation is widely recognized as a problem in early drug discovery, we highlight the opportunities for exploiting this phenomenon in biological milieus and for drug formulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA