RESUMO
Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Traço Falciforme , Animais , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/metabolismo , Neoplasias Renais/patologia , Traço Falciforme/genética , Traço Falciforme/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismoRESUMO
Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.
Assuntos
Antineoplásicos/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Docetaxel/farmacologia , Humanos , Masculino , Camundongos , Células PC-3RESUMO
BACKGROUND: Bone metastasis is the most frequent complication in prostate cancer patients and associated outcome remains fatal. Radium223 (Rad223), a bone targeting radioisotope improves overall survival in patients (3.6 months vs. placebo). However, clinical response is often followed by relapse and disease progression, and associated mechanisms of efficacy and resistance are poorly understood. Research efforts to overcome this gap require a substantial investment of time and resources. Computational models, integrated with experimental data, can overcome this limitation and drive research in a more effective fashion. METHODS: Accordingly, we developed a predictive agent-based model of prostate cancer bone metastasis progression and response to Rad223 as an agile platform to maximize its efficacy. The driving coefficients were calibrated on ad hoc experimental observations retrieved from intravital microscopy and the outcome further validated, in vivo. RESULTS: In this work we offered a detailed description of our data-integrated computational infrastructure, tested its accuracy and robustness, quantified the uncertainty of its driving coefficients, and showed the role of tumor size and distance from bone on Rad223 efficacy. In silico tumor growth, which is strongly driven by its mitotic character as identified by sensitivity analysis, matched in vivo trend with 98.3% confidence. Tumor size determined efficacy of Rad223, with larger lesions insensitive to therapy, while medium- and micro-sized tumors displayed up to 5.02 and 152.28-fold size decrease compared to control-treated tumors, respectively. Eradication events occurred in 65 ± 2% of cases in micro-tumors only. In addition, Rad223 lost any therapeutic effect, also on micro-tumors, for distances bigger than 400 µm from the bone interface. CONCLUSIONS: This model has the potential to be further developed to test additional bone targeting agents such as other radiopharmaceuticals or bisphosphonates.
Assuntos
Neoplasias Ósseas/radioterapia , Braquiterapia/métodos , Modelos Biológicos , Neoplasias da Próstata/patologia , Rádio (Elemento)/administração & dosagem , Animais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Simulação por Computador , Progressão da Doença , Humanos , Microscopia Intravital , Masculino , Camundongos , Microscopia de Fluorescência , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tíbia/efeitos da radiação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Circulating cancer cells can putatively colonize distant organs to form metastases or to reinfiltrate primary tumors themselves through a process termed "tumor self-seeding." Here we exploit this biological attribute to deliver tumor necrosis factor alpha (TNF), a potent antitumor cytokine, directly to primary and metastatic tumors in a mechanism that we have defined as "tumor self-targeting." For this purpose, we genetically engineered mouse mammary adenocarcinoma (TSA), melanoma (B16-F10), and Lewis lung carcinoma cells to produce and release murine TNF. In a series of intervention trials, systemic administration of TNF-expressing tumor cells was associated with reduced growth of both primary tumors and metastatic colonies in immunocompetent mice. We show that these malignant cells home to tumors, locally release TNF, damage neovascular endothelium, and induce massive cancer cell apoptosis. We also demonstrate that such tumor-cell-mediated delivery avoids or minimizes common side effects often associated with TNF-based therapy, such as acute inflammation and weight loss. Our study provides proof of concept that genetically modified circulating tumor cells may serve as targeted vectors to deliver anticancer agents. In a clinical context, this unique paradigm represents a personalized approach to be translated into applications potentially using patient-derived circulating tumor cells as self-targeted vectors for drug delivery.
Assuntos
Neoplasias Experimentais/terapia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Apoptose , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/secundário , Carcinoma Pulmonar de Lewis/terapia , Engenharia Celular , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Sistemas de Liberação de Medicamentos , Endotélio Vascular/patologia , Feminino , Humanos , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/secundário , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/patologia , Melanoma Experimental/secundário , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/patologia , Neoplasias Experimentais/secundário , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Transdução Genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In response to an urgent need for improved diagnostic and predictive serum biomarkers for management of metastatic prostate cancer, we used phage display fingerprinting to analyze sequentially acquired serum samples from a patient with advancing prostate cancer. We identified a peptide ligand, CTFAGSSC, demonstrating an increased recovery frequency over time. Serum antibody reactivity to this peptide epitope increased in the index patient, in parallel with development of deteriorating symptoms. The antigen mimicking the peptide epitope was identified as alpha-2-Heremans-Schmid glycoprotein, also known as fetuin-A. Metastatic prostate cancer cell lines and bone metastasis samples displayed robust fetuin-A expression, and we demonstrated serum immune reactivity to fetuin-A with concomitant development of metastatic castrate-resistant disease in a large cohort of prostate cancer patients. Whereas fetuin-A is an established tumor antigen in several types of cancer, including breast cancer, glioblastoma, and pancreas cancer, this report is to our knowledge the first study implicating fetuin-A in prostate cancer and indicating that autoantibodies specific for fetuin-A show utility as a prognostic indicator for prostate cancer patients prone to progress to metastatic disease.
Assuntos
Autoanticorpos/imunologia , Neoplasias da Próstata/imunologia , Sequência de Aminoácidos , Anticorpos/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Técnicas de Química Combinatória , Progressão da Doença , Seguimentos , Humanos , Masculino , Dados de Sequência Molecular , Metástase Neoplásica , Mapeamento de Peptídeos , Peptídeos/química , Peptídeos/imunologia , Neoplasias da Próstata/patologia , alfa-2-Glicoproteína-HS/imunologiaRESUMO
Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.
Assuntos
Metástase Linfática/patologia , Vasos Linfáticos/patologia , Melanoma/patologia , Sequência de Aminoácidos , Animais , Biópsia , Comunicação Celular/imunologia , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Linfático/patologia , Humanos , Ligantes , Camundongos Nus , Mimetismo Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Proteína Fosfatase 2/metabolismo , Reprodutibilidade dos Testes , Neoplasias Cutâneas , Resultado do Tratamento , Melanoma Maligno CutâneoRESUMO
Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.
Assuntos
Indutores da Angiogênese/metabolismo , Células da Medula Óssea/metabolismo , Antígenos CD13 , Células Mieloides/metabolismo , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/metabolismo , Animais , Células da Medula Óssea/patologia , Antígeno CD11b , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Mieloides/patologia , Metástase Neoplásica , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Neovascularização Patológica/patologiaRESUMO
Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.
Assuntos
Antígenos CD13/metabolismo , Neoplasias Pulmonares/enzimologia , Animais , Antígenos CD13/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Bone metastases are the most common milestone in the lethal progression of prostate cancer and prominent in a substantial portion of renal malignancies. Interactions between cancer and bone host cells have emerged as drivers of both disease progression and therapeutic resistance. To best understand these central host-epithelial cell interactions, biologically relevant preclinical models are required. To achieve this goal, we here established and characterized tissue-engineered bone mimetic environments (BME) capable of supporting the growth of patient-derived xenograft (PDX) cells, ex vivo and in vivo. The BME consisted of a polycaprolactone (PCL) scaffold colonized by human mesenchymal stem cells (hMSCs) differentiated into osteoblasts. PDX-derived cells were isolated from bone metastatic prostate or renal tumors, engineered to express GFP or luciferase and seeded onto the BMEs. BMEs supported the growth and therapy response of PDX-derived cells, ex vivo. Additionally, BMEs survived after in vivo implantation and further sustained the growth of PDX-derived cells, their serial transplant, and their application to study the response to treatment. Taken together, this demonstrates the utility of BMEs in combination with patient-derived cells, both ex vivo and in vivo. STATEMENT OF SIGNIFICANCE: Our tissue-engineered BME supported the growth of patient-derived cells and proved useful to monitor the therapy response, both ex vivo and in vivo. This approach has the potential to enable co-clinical strategies to monitor bone metastatic tumor progression and therapy response, including identification and prioritization of new targets for patient treatment.
Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Osso e Ossos/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Osteoblastos/patologiaRESUMO
Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney neoplasm; bone metastasis (BM) develops in 35% to 40% of metastatic patients and results in substantial morbidity and mortality, as well as medical costs. A key feature of ccRCC is the loss of function of the von Hippel-Lindau protein, which enhances angiogenesis via vascular endothelial growth factor release. Consequently, antiangiogenic tyrosine kinase inhibitors (TKI) emerged as a treatment for ccRCC. However, limited data about their efficacy in BM is available, and no systematic comparisons have been performed. We developed mouse models of bone and lung ccRCC tumors and compared their anticancer efficacy, impact on mouse survival, and mechanisms of action, including effects on tumor cells and both immune and nonimmune (blood vessels and osteoclasts) bone stromal components. This approach elucidates the efficacy of TKIs in ccRCC bone tumors to support rational interrogation and development of therapies. SIGNIFICANCE: TKIs showed different efficacy in synchronous bone and lung metastases and did not eradicate tumors as single agents but induced extensive reprogramming of the BM microenvironment. This resulted in a significant decrease in neoangiogenic blood vessels, bone remodeling, and immune cell infiltration (including CD8 T cells) with altered spatial distribution.
Assuntos
Inibidores da Angiogênese , Neoplasias Ósseas , Carcinoma de Células Renais , Neoplasias Renais , Inibidores de Proteínas Quinases , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Animais , Humanos , Camundongos , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , FemininoRESUMO
Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.
Assuntos
Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Peso Molecular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Tirosina , Proteínas Tirosina Fosfatases/metabolismoRESUMO
Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Receptores de Andrógenos , Osso e Ossos/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Microambiente TumoralRESUMO
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de SinaisRESUMO
Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. IMPLICATIONS: These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Proteômica , Neoplasias da Próstata/metabolismo , Próstata/patologia , Glicólise , Fosforilação Oxidativa , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
The angiogenic switch is a fundamental process for many diseases and for tumor growth. The main proangiogenic stimulus is hypoxia, through activation of the hypoxia-inducible factor (HIF)-1α pathway in endothelial cells (ECs). We have previously shown that the vasostatin-1 (VS-1) fragment of chromogranin A inhibits TNF-α-induced vessel permeability and VEGF-induced EC proliferation, together with migration and matrix invasion, which are all critical steps in angiogenesis. The present study was undertaken to investigate the effect of VS-1 on tumor angiogenesis. We found mouse mammary adenocarcinomas (TS/A), genetically engineered to secrete VS-1 (TS/A 1B8), to be characterized by reduced vascular density and more regular vessels, compared with nontransfected tumors [TS/A wild type (WT)]. Supernatants from TS/A WT cells, but not those from TS/A 1B8, generated tip cells and promoted the permeability of primary human umbilical vein ECs, via VE-cadherin redistribution and cytoskeletal disorganization. These effects were abrogated by mAb 5A8, a VS-1-blocking antibody. Furthermore, VS-1 inhibited hypoxia-driven EC morphological changes, VE-cadherin redistribution, intercellular gap formation, tube morphogenesis, and HIF-1α nuclear translocation in vitro. Our findings highlight a previously undescribed function of VS-1 as a regulator of tumor vascularization.
Assuntos
Cromogranina A/fisiologia , Hipóxia/fisiopatologia , Neovascularização Patológica/metabolismo , Fragmentos de Peptídeos/fisiologia , Adenocarcinoma/fisiopatologia , Animais , Linhagem Celular Tumoral , Cromogranina A/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , FenótipoRESUMO
223Ra is a bone-seeking, α-particle-emitting radionuclide approved for the treatment of patients with metastatic prostate cancer and is currently being tested in a variety of clinical trials for primary and metastatic cancers to bone. Clinical evaluation of 223Ra hematologic safety showed a significantly increased rate of neutropenia and thrombocytopenia in patients, hinting at myelosuppression as a side effect. Methods: In this study, we investigated the consequences of 223Ra treatment on bone marrow biology by combining flow cytometry, single-cell RNA sequencing, three-dimensional multiphoton microscopy and bone marrow transplantation analyses. Results: 223Ra accumulated in bones and induced zonal radiation damage confined to the bone interface, followed by replacement of the impaired areas with adipocyte infiltration, as monitored by 3-dimensional multiphoton microscopy ex vivo. Flow cytometry and single-cell transcriptomic analyses on bone marrow hematopoietic populations revealed transient, nonspecific 223Ra-mediated cytotoxicity on resident populations, including stem, progenitor, and mature leukocytes. This toxicity was paralleled by a significant decrease in white blood cells and platelets in peripheral blood-an effect that was overcome within 40 d after treatment. 223Ra exposure did not impair full hematopoietic reconstitution, suggesting that bone marrow function is not permanently hampered. Conclusion: Our results provide a comprehensive explanation of 223Ra reversible effects on bone marrow cells and exclude long-term myelotoxicity, supporting safety for patients.
Assuntos
Partículas alfa , Medula Óssea , Osso e Ossos , Citometria de Fluxo , Humanos , Masculino , RadioisótoposRESUMO
The foreign body response (FBR) is a clinically relevant issue that can cause malfunction of implanted medical devices by fibrotic encapsulation. Whereas inflammatory aspects of the FBR have been established, underlying fibroblast-dependent mechanisms remain unclear. We here combine multiphoton microscopy with ad hoc reporter mice expressing α-smooth muscle actin (αSMA) protein to determine the locoregional fibroblast dynamics, activation, and fibrotic encapsulation of polymeric materials. Fibroblasts invaded as individual cells and established a multicellular network, which transited to a two-compartment fibrotic response displaying an αSMA cold external capsule and a long-lasting, inner αSMA hot environment. The recruitment of fibroblasts and extent of fibrosis were only incompletely inhibited after depletion of macrophages, implicating coexistence of macrophage-dependent and macrophage-independent mediators. Furthermore, neither altering material type or porosity modulated αSMA+ cell recruitment and distribution. This identifies fibroblast activation and network formation toward a two-compartment FBR as a conserved, self-organizing process partially independent of macrophages.
RESUMO
223Ra is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity toward PCa cells near the bone interface, whereas cells positioned in the core respond poorly because of short α-particle penetrance. ß1 integrin (ß1I) interference has been shown to increase radiosensitivity and significantly enhance external-beam radiation efficiency. We hypothesized that targeting ß1I would improve 223Ra outcome. Methods: We tested the effect of combining 223Ra and anti-ß1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low ß1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo 3-dimensional imaging of bone lesions and by proteomic analysis and were further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Results: Interference with ß1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, whereas no change was achieved in C4-2B tumors. Anti-ß1I treatment decreased the PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects 2-fold, in vivo and in silico. Regression was paralleled by decreased expression of radioresistance mediators. Conclusion: Targeting ß1I significantly improves 223Ra outcome and points toward combinatorial application in PCa tumors with high ß1I expression.
Assuntos
Neoplasias Ósseas , Integrinas , Neoplasias da Próstata , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Humanos , Integrina beta1/metabolismo , Integrinas/antagonistas & inibidores , Masculino , Camundongos , Neoplasias da Próstata/patologia , Proteômica , Resultado do TratamentoRESUMO
Fibroblast adhesion can be modulated by proteins released by neuroendocrine cells and neurons, such as chromogranin A (CgA) and its N-terminal fragment vasostatin-1 (VS-1, CgA(1-78)). We have investigated the mechanisms of the interaction of VS-1 with fibroblasts and of its pro-adhesive activity and have found that the proadhesive activity of VS-1 relies on its interaction with the fibroblast membrane via a phospholipid-binding amphipathic alpha-helix located within residues 47-66, as well as on the interaction of the adjacent C-terminal region 67-78, which is structurally similar to ezrin-radixin-moesin-binding phosphoprotein 50 (a membrane-cytoskeleton adapter protein), with other cellular components critical for the regulation of cell cytoskeleton.