Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(6): 7198-7205, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31971375

RESUMO

Controlling and manipulating the self-assembly technology at the nanoscale has become a powerful strategy for improving chemical processes and further developing the conception of atom efficiency. Herein, an unexpected core-shell structured Gd2O3@Pt@ZIF-8 nanoreactor has been fabricated using the self-assembly strategy in which the firm Gd2O3 nanosupport anchored the highly active Pt nanoparticle coated porous zeolitic imidazolate framework (ZIF-8). The well-designed Gd2O3@Pt@ZIF-8 structure shows good performance in selective hydrogenation of aldehyde-, keto-, and nitro-compounds with full conversion (>99.9%) and superior selectivity (>95%). It showed the channel sieving effect of the ZIF-8 channels toward enhancing the catalytic selectivity. After being recycled eight times, their activity remains unchanged and their core-shell structure is kept intact. So, the outer ZIF-8 membranes not only prevent Pt nanoparticles from agglomeration and slipping during a catalytic reaction but also maintain the original activity and long-term stability compared to the Gd2O3@Pt catalyst. The self-assembly strategy demonstrated here will allow the development of other highly active, stable, and selective catalysts for important but challenging transformations.

2.
ACS Appl Mater Interfaces ; 12(17): 19718-19726, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32241111

RESUMO

Binary charge-transfer complex polymorphs composed of perylene and 4,8-bis(dicyanomethylene)-4,8-dihydrobenzo-[1,2-b:4,5-b']-dithiophene (DTTCNQ) were synthesized separately via a simple artificial nucleation-tailoring method, in both macroscopic and microscopic cocrystal engineering manners. The two polymorphs were testified to be independently thermosalient in the solid state, and the specific self-assembly derived from homogeneous or heterogeneous nucleation by assistance of governable thermodynamic/kinetic drive, leading to a change in the ordered p-n stacking structure. The as-prepared polymorphic microcrystals afforded a significantly varied (opto)electronic property: high n-type transporting and good photoresponsivity for ß-complex, and ambipolar transporting with ignorable photoresponsivity for α-complex, attributing to the different charge-transfer and supramolecular alignment. This work provides us a new route to the exploitation of donor-acceptor complex family, making it possible to develop functional materials and devices based on variable supramolecular binary structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA