Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 215(Pt 1): 114327, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100099

RESUMO

Harmful red tides in China have caused paralytic shellfish toxins (PSTs) pollution and led to severe socioeconomic effects in shellfish aquaculture. Although shellfish can survive harmful algal blooms, the effects on their Condition Index (CI) have been underestimated. This study sought to evaluate the effects of the profiles and levels of paralytic shellfish toxins on variations in the CI in bivalves under natural blooming conditions. We observed clear soft tissue lesions to varying degrees except in Mytilus galloprovincialis after toxin exposure. Among the five species of shellfish exposed in situ, only M. galloprovincialis accumulated PSTs content above the maximum permitted level (800 µg STX di-HCl eq./kg). The highest toxin content in all sample tissues was observed in Patinopecten yessoensis. Significant interspecies differences in PSTs accumulation among the five bivalve species were observed in the hepatopancreas. A total of nine PSTs components and four new C-11 hydroxyl metabolites (so-called M-toxins) toxins were detected, and detoxification diversity was observed among bivalves. We observed a higher proportion of M-toxin in early stages, and the proportions changed only slightly over time in M. galloprovincialis and Magallana gigas, thus accounting for the significantly higher metabolism rate. Notably, the CI in M. gigas and Argopecten irradians was positively correlated with lowest toxin accumulation of PSTs content, but significantly inhibited. In conclusion, our results revealed a significant inhibitory effect on the CI in shellfish, in a species specific manner, with distinct levels of inhibition correlated with different toxin metabolites. Our study revealed the toxin content of different bivalves exposed to a natural red tide environment and the consequent effects on growth, thus building a foundation for research on the mechanisms underlying the effects of PSTs on growth. These data establish the ecological and economic significance of the effects of harmful algal blooms on bivalves.


Assuntos
Dinoflagellida , Mytilus , Animais , Proliferação Nociva de Algas , Toxinas Marinhas/toxicidade , Mytilus/metabolismo , Pectinidae
2.
Environ Pollut ; 313: 120241, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152713

RESUMO

In the last 5 years, paralytic shellfish toxins (PSTs) have been recurrently detected in mollusks farmed in the mussel culture area of Qinhuangdao city, along with the occurrence of toxic outbreaks linked to dinoflagellate species of the Alexandrium genus. To understand the formation mechanism and variation of these events, continuous and comprehensive PSTs monitoring was carried out between 2017 and 2020. Through the analysis of both phytoplankton and cysts via light microscopy and quantitative polymerase chain reaction, it was shown that Alexandrium catenella was responsible for the production of PSTs, which consisted mainly of gonyautoxins 1,4 (GTX1/4, 87%) and GTX2/3 (13%). During bloom events in 2019, mussels accumulated the highest PSTs value (929 µg STX di-HCl eq·kg-1) in conjunction with the peak of cell abundances, and toxin profiles were consistent with high distributions of GTX1/4, GTX2/3, and Neosaxitoxin. Toxin metabolites vary in different substances and mainly transferred to a stable proportion of α-epimer: ß-epimers 3:1. The environmental drivers of Alexandrium blooms included the continuous rise of water temperature (>4 °C) and calm weather with low wind speed and no significant precipitation. By comparing toxin profiles and method sensitivity, it was found that dissolved toxins in seawater are more useful for early warning. These results have important implications for the effective monitoring and management of paralytic shellfish poisoning outbreaks.


Assuntos
Bivalves , Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Dinoflagellida/metabolismo , Água do Mar , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA