Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8006): 204-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418880

RESUMO

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Assuntos
Encéfalo , Olho , Sistema Linfático , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Bactérias/imunologia , Encéfalo/anatomia & histologia , Encéfalo/imunologia , Dependovirus/imunologia , Olho/anatomia & histologia , Olho/imunologia , Glioblastoma/imunologia , Herpesvirus Humano 2/imunologia , Injeções Intravítreas , Sistema Linfático/anatomia & histologia , Sistema Linfático/imunologia , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/imunologia , Macaca mulatta , Meninges/imunologia , Nervo Óptico/imunologia , Suínos , Peixe-Zebra , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia
2.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648490

RESUMO

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Assuntos
Administração Intranasal , Antivirais , Neomicina , SARS-CoV-2 , Animais , Neomicina/farmacologia , Neomicina/administração & dosagem , Camundongos , Humanos , Antivirais/farmacologia , Antivirais/administração & dosagem , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Infecções Respiratórias/prevenção & controle , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Mucosa Nasal/efeitos dos fármacos , Modelos Animais de Doenças , Tratamento Farmacológico da COVID-19 , Mesocricetus , Feminino , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia
3.
World J Clin Cases ; 12(17): 3105-3122, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38898844

RESUMO

BACKGROUND: Malancao (MLC) is a traditional Chinese medicine with a long history of utilization in treating ulcerative colitis (UC). Nevertheless, the precise molecular mechanisms underlying its efficacy remain elusive. This study leveraged ultra-high-performance liquid chromatography coupled with exactive mass spectrometry (UHPLC-QE-MS), network pharmacology, molecular docking (MD), and gene microarray analysis to discern the bioactive constituents and the potential mechanism of action of MLC in UC management. AIM: To determine the ingredients related to MLC for treatment of UC using multiple databases to obtain potential targets for fishing. METHODS: This research employs UHPLC-QE-MS for the identification of bioactive compounds present in MLC plant samples. Furthermore, the study integrates the identified MLC compound-related targets with publicly available databases to elucidate common drug disease targets. Additionally, the R programming language is utilized to predict the central targets and molecular pathways that MLC may impact in the treatment of UC. Finally, MD are conducted using AutoDock Vina software to assess the affinity of bioactive components to the main targets and confirm their therapeutic potential. RESULTS: Firstly, through a comprehensive analysis of UHPLC-QE-MS data and public database resources, we identified 146 drug-disease cross targets related to 11 bioactive components. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis highlighted that common disease drug targets are primarily involved in oxidative stress management, lipid metabolism, atherosclerosis, and other processes. They also affect AGE-RAGE and apoptosis signaling pathways. Secondly, by analyzing the differences in diseases, we identified key research targets. These core targets are related to 11 active substances, including active ingredients such as quercetin and luteolin. Finally, MD analysis revealed the stability of compound-protein binding, particularly between JUN-Luteolin, JUN-Quercetin, HSP90AA1-Wogonin, and HSP90AA1-Rhein. Therefore, this suggests that MLC may help alleviate intestinal inflammation in UC, restore abnormal lipid accumulation, and regulate the expression levels of core proteins in the intestine. CONCLUSION: The utilization of MLC has demonstrated notable therapeutic efficacy in the management of UC by means of the compound target interaction pathway. The amalgamation of botanical resources, metabolomics, natural products, MD, and gene chip technology presents a propitious methodology for investigating therapeutic targets of herbal medicines and discerning novel bioactive constituents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA