Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 196: 106928, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39270754

RESUMO

In recent years, the red swamp crayfish (Procambarus clarkii, P. clarkii) farming industry has suffered huge economic losses due to the pathogenic bacterium Spiroplasma eriocheiris (S. eriocheiris). To elucidate the immune response mechanism and identify hub immune genes as well as their associated microRNAs that regulate the host response of P. clarkii against S. eriocheiris infection, we conducted a comprehensive analysis on P. clarkii hemocyte mRNA and microRNA (miRNA) transcriptomes at different infection stages using third- and second-generation sequencing technologies. In full-length transcriptome functional annotation, 8155 unigenes were annotated, and 1168 potential new transcripts were predicted. In the mRNA transcriptome, a total of 3168 differentially expressed genes were identified at different infection stages, including 1492 upregulated and 1676 downregulated genes (duplicate genes excluded). Transcriptome analysis revealed 880 differentially expressed genes involved in multiple pathways and processes such as endocytosis, autophagy, lysosome, mTOR signaling, phagosome, and the Fanconi anemia pathway. Mfuzz analysis was employed to integrate and cluster the differential expression trends of genes across the three infection stages. In the miRNA transcriptome, 234 miRNAs and 966 predicted target genes were identified, with 86 differentially expressed miRNAs identified across the three time periods. A significant difference (P < 0.05) was observed for miRNAs including pcl-miR-146-3p, pcl-miR-74-3p, pcl-miR-225-5p, and pcl-miR-68-5p. These miRNAs are involved in multiple immune and autophagy-related pathways and have regulatory effects on immune genes including Vps26, lqf, and ERK-A. Based on the differentially expressed immune-related genes, we constructed a protein-protein interaction (PPI) network, which revealed the interactions among hub genes including Rac1, Akt1, Rho1, and Egfr. We also constructed a miRNA-gene interaction network in immune and autophagy-related processes, highlighting the potential regulatory effects of miRNAs including pcl-miR-183-5p, pcl-miR-146-3p, pcl-miR-176-5p, and pcl-miR-225-5p on proteins including LST8, SNAP29, Rab-7A, and ERK-A. To conclude, this study has identified hub immune genes and corresponding regulatory miRNAs in P. clarkii hemocytes in response to S. eriocheiris infection and explored the roles of these genes in selected pathways and processes. These findings are expected to provide further insights into the molecular mechanisms that confer resistance to S. eriocheiris infection in P. clarkii.


Assuntos
Astacoidea , Perfilação da Expressão Gênica , MicroRNAs , RNA Mensageiro , Spiroplasma , Transcriptoma , Animais , Spiroplasma/genética , MicroRNAs/genética , Astacoidea/microbiologia , Astacoidea/genética , Astacoidea/imunologia , RNA Mensageiro/genética , Hemócitos/imunologia , Hemócitos/microbiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
2.
Microb Pathog ; 184: 106365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741306

RESUMO

Spiroplasma eriocheiris is one of the major pathogenic bacteria in crustaceans, featuring high infectivity, rapid transmission, and an absence of effective control strategies, resulting in significant economic losses to the aquaculture industry. Research into virulence-related factors provides an important perspective to clarify how Spiroplasma eriocheiris is pathogenic to shrimps and crabs. Therefore, in this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was utilized to undertake a differential proteomic analysis of high- and low-virulence Spiroplasma eriocheiris strains at different growth phases. A total of 868 differentially expressed proteins (DEPs) were obtained, of which 31 novel proteins were identified by proteogenomic analysis. There were 62, 61, 175, and 235 DEPs between the log phase (YD) and non-log phase (YFD) of the high-virulence strain, between the log phase (CD) and non-log phase (CFD) of the low-virulence strain, between YD and CD, and between CFD and YFD, respectively. All the DEPs were compared with virulence protein databases (MvirDB and VFDB), and 68 virulence proteins of Spiroplasma eriocheiris were identified, of which 12 were involved in a total of 21 metabolic pathways, including motility, chemotaxis, growth, metabolism and virulence of the bacteria. The results of this study form the basis for further research into the molecular mechanism of virulence and physiological differences between high- and low-virulence strains of Spiroplasma eriocheiris, and provide a scientific basis for a detailed understanding of its pathogenesis.


Assuntos
Braquiúros , Spiroplasma , Animais , Proteômica/métodos , Virulência , Spiroplasma/genética , Braquiúros/microbiologia
3.
Fish Shellfish Immunol ; 130: 436-452, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184970

RESUMO

In recent years, the industry in charge of the cultivation of Macrobrachium nipponense (M.nipponense) has suffered significant economic losses due to an infectious pathogen called Spiroplasma eriocheiris (S.eriocheiris). There has therefore been a need to identify the key immune and autophagy genes that respond to M.nipponense's infection with S. eriocheiris to analyze its immune response mechanism and the regulation of related microRNAs (miRNAs). In this study, the mRNA and miRNA transcriptome of M.nipponense's hemocytes were analyzed at different stages of infection. This analysis employed the second and third-generation sequencing technologies. In the mRNA transcriptome, 1656 genes were expressed in healthy and susceptible M.nipponense. 892 of these were significantly up-regulated, while 764 were down-regulated. 118 genes with significant differences in autophagy, endocytosis, lysosome, Toll, IMD, and VEGF pathways were obtained from the transcriptome. In the miRNA transcriptome, 312 miRNAs (Conserved: 112, PN-type: 18, PC-type: 182) were sequenced. 74 were significantly up-regulated, and 57 were down-regulated. There were 25 miRNAs involved in regulating the Toll and IMD pathways, 41 in endocytosis, 30 in lysosome, and 12 in the VEGF pathway. An integrated analysis of immune-related miRNAs and mRNAs showed that miRNAs with significant differences (P < 0.05) such as ame-miR-29b-3p, dpu-miR-1and PC-3p-945_4074, had corresponding regulatory relationships with 118 important immune genes such as Relish, Dorsal, Caspase-3, and NF-κB. This study obtained the key immune and autophagy-related genes and corresponding regulatory miRNAs in M. nipponense's hemocytes in response to an infection by S.eriocheiris. The results can provide vital data that further reveals the defense mechanism of M.nipponense's immune system against S.eriocheiris. It can also help further comprehension and interpretation of M.nipponense's resistance mechanism to the invading S.eriocheiris, and provide molecular research information for the realization of host-directed therapies (HDT) for M.nipponense.


Assuntos
MicroRNAs , Palaemonidae , Spiroplasma , Animais , Autofagia , Caspase 3/genética , Hemócitos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Palaemonidae/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spiroplasma/fisiologia , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA