Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 602(7898): 606-611, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197620

RESUMO

Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.


Assuntos
Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
2.
J Am Chem Soc ; 146(31): 21466-21475, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046143

RESUMO

Network interpenetration plays a crucial role in functionalizing porous framework materials. However, controlling the degree of interpenetration in covalent organic frameworks (COFs) to influence their pore sizes, shapes, and functionalities still remains a significant challenge. Here, we demonstrate a steric tuning strategy to control the degree of COF interpenetration and modulate their physicochemical properties. By imine condensations of 1,1'-bi-2-naphthol-derived tetraaldehydes bearing different alkyl substituents with the monomer tetra(p-aminophenyl)-methane, we synthesized and characterized a family of two-component and three-component chiral COFs with different interpenetrated dia networks. The alkyl groups are periodically appended on the pore walls, and their types/contents that can be synthetically tuned control the interpenetration degree of COFs by minimizing repulsive interactions between the alkyl groups. Specifically, the COF with -OH groups adopts an interpenetrated dia-c5 topology, those with -OMe/-OEt groups take an interpenetrated dia-c4 topology, whereas those with the bulky -OnPr/-OnBu groups exhibit a noninterpenetrated dia-c1 topology. The multivariate COFs with both -OH and -OnBu groups display either a noninterpenetrated or dia-c5 topology, depending on the proportion of -OnBu groups. The extent of interpenetration in COFs significantly affects their porosity, thermal stability, and chemical stability, resulting in varying selective performances in the adsorption and separation of dyes and asymmetric catalysis. This work highlights the potential of using steric hindrance to tune and control interpenetration, porosity, stability, and functionalities of COFs materials, broadening the range of their applications.

3.
J Am Chem Soc ; 146(12): 8407-8416, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482804

RESUMO

Although a variety of chiral porous framework materials have been reported, there are few examples known to combine molecular chirality, helicity, and three-dimensional (3D) intrinsically chiral topology in one structure, which is beneficial for chirality transfer and amplification. Here, we report the synthesis of the first two 3D covalent organic frameworks (COFs) with an intrinsic chiral qzd topology, which exhibit unusual integration of various homochiral and homohelical features. By imine condensation of 4-connected porphyrin tetraamines and 2-connected enantiopure diene dialdehyde, we prepared two isostructural COFs with a noninterpenetrated qzd topology. The specific geometry and conformation flexibility of the V-shaped diene linker control the alignment of square-planar porphyrin units with rotational linkages and facilitate the creation of homochiral extended porous structures that feature a helical arrangement of porphyrins. Post-synthetic metalation of CCOF 23 with Rh(I) affords a heterogeneous catalyst for the asymmetric Michael addition reaction of aryl boronic acids to 2-cyclohexenone, which shows higher enantioselectivities compared to their homogeneous counterparts, presumably due to the confined effect of helical channels. This finding will provide an impetus to explore multichirality materials, offering new insights into the generation and control of helicity, homochirality, and enantioselectivity in the solid state.

4.
J Am Chem Soc ; 146(31): 21806-21814, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39056747

RESUMO

Water adsorption/desorption cyclability of porous materials is a prerequisite for diverse applications, including atmospheric water harvesting (AWH), humidity autocontrol (HAC), heat pumps and chillers, and hydrolytic catalysis. However, unambiguous molecular insights into the correlation between underlying building blocks and the cyclability are still highly elusive. In this work, by taking advantage of the well-established isoreticular synthetic principle in Zr(IV) metal-organic frameworks (Zr-MOFs), we show that the inherent density of hydrogen atoms in the organic skeleton can play a key role in regulating the water sorption cyclability of MOFs. The ease of isoreticular practice of Zr-MOFs enables the successful syntheses of two pairs of isostructural Zr-MOFs (NU-901 and NU-903, NU-950 and SJTU-9) from pyrene- or benzene-cored carboxylate linkers, which feature scu and sqc topological nets, respectively. NU-901 and NU-950 comprised of pyrene skeletons carrying more hydrogen-bonding anchoring sites show distinctly inferior cyclability as compared with NU-903 and SJTU-9 built of benzene units. Single-crystal X-ray crystallography analysis of the hydrated structure clearly unveils the water molecule-involved interactions with the hydrogen-bonding donors of benzene moieties. Remarkably, NU-903 and SJTU-9 isomers exhibit outstanding water vapor sorption capacities as well as working capacities at the desired humidity range with potential implementations covering indoor humidity control and water harvesting. Our findings uncover the importance of hydrogen-bonding anchoring site engineering of organic scaffold in manipulating the framework durability toward water sorption cycle and will also likely facilitate the rational design and development of highly robust porous materials.

5.
J Am Chem Soc ; 146(10): 6638-6651, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415351

RESUMO

Covalent organic cages are a prominent class of discrete porous architectures; however, their structural isomerism remains relatively unexplored. Here, we demonstrate the structural isomerism of chiral covalent organic cages that renders distinct enantioselective catalytic properties. Imine condensations of tetra-topic 5,10-di(3,5-diformylphenyl)-5,10-dihydrophenazine and ditopic 1,2-cyclohexanediamine produce two chiral [4 + 8] organic cage isomers with totally different topologies and geometries that depend on the orientations of four tetraaldehyde units with respect to each other. One isomer (PN-1) has an unprecedented Johnson-type J26 structure, whereas another (PN-2) adopts a tetragonal prismatic structure. After the reduction of the imine linkages, the cages are transformed into two amine bond-linked isomers PN-1R and PN-2R. After binding to Ni(II) ions, both can serve as efficient catalysts for asymmetric Michael additions, whereas PN-2R affords obviously higher enantioselectivity and reactivity than PN-1R presumably because of its large cavity and open windows that can concentrate reactants for the reactions. Density-functional theory (DFT) calculations further confirm that the enantioselective catalytic performance varies depending on the isomer.

6.
J Am Chem Soc ; 146(3): 2141-2150, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38191288

RESUMO

Control of humidity within confined spaces is critical for maintaining air quality and human well-being, with implications for environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites. However, existing techniques rely on energy-intensive electrically driven equipment or complex temperature and humidity control (THC) systems, resulting in imprecision and inconvenience. The development of innovative techniques and materials capable of simultaneously meeting the stringent requirements of practical applications holds the key to creating intelligent and energy-efficient humidity control devices. In this study, we introduce chiral reticular chemistry as a tailored synthetic approach, targeting a highly porous hea topological framework characterized by intrinsic interpenetrating pore architecture. This groundbreaking design successfully circumvents the traditional compromise between the pore volume and hydrolytic stability. Our metal-organic framework (MOF) exhibits an extraordinary working capacity, setting a new record at 1.35 g g-1 within the relative humidity (RH) range of 40-60%, without exhibiting hysteresis. Consequently, it emerges as a state-of-the-art candidate for intelligent humidity regulation within confined spaces. Utilizing single-crystal X-ray measurements and molecular simulations, we unequivocally elucidate the mechanism of water clustering and pore filling, underscoring the pivotal role of the linker functionality in governing the water seeding process. Our findings represent a significant advancement in the field, paving the way for the development of highly efficient humidity control technologies and offering promising solutions for diverse real-world scenarios.

7.
Small ; 20(30): e2312130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409470

RESUMO

The principal challenges faced by sodium-ion batteries (SIBs) and potassium-ion batteries (KIBs) revolve around identifying suitable host materials capable of accommodating metal ions with larger dimensions and addressing the issue of sluggish chemical kinetics. Herein, a MoSe2/Cr2Se3 heterojunction uniformly embedded is fabricated in nitrogen-doped hollow carbon nanospheres (MoSe2/Cr2Se3@N-HCSs) as an electrode material for SIBs and KIBs. Cr2Se3 exhibits spontaneous antiparallel alignment of magnetic moments. Mo2+ doping is employed to regulate the electron spin states of Cr2Se3. Moreover, the MoSe2 and Cr2Se3 heterojunctions induce a lattice mismatch at the heterostructure interface, resulting in spin-polarized states or localized magnetic moments at the interface, potentially contributing to spin-polarized surface capacitance. MoSe2/Cr2Se3@N-HCSs demonstrate a high capacity of 498 mAh g-1 at 0.1 A g-1 with good cycling stability (capacity of 405 mAh g-1 and a coulombic efficiency of 99.8% after 1000 cycles). Additionally, density functional theory (DFT) calculations simulate the accumulation of spin-polarized charges at the MoSe2/Cr2Se3@N-HCSs heterojunction interface, dependent on the surface electron density of the antiferromagnetic Cr2Se3 and the surface spin polarization near the Fermi level. After regulating the electron spin states through Mo-doping, the band gap of the material decreases. These significant findings provide novel insights into the design and synthesis of electrode materials with exceptional performance characteristics for batteries.

8.
Small ; 20(13): e2308962, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37949812

RESUMO

Photodynamic therapy (PDT), as a means of locally and rapidly inducing adipocyte death via light illumination, in combination with adipose browning induction, a more gradual and widespread effect that could transform white adipose tissue into thermogenic adipose tissue, manifests a promising approach to combat obesity. Herein, adipose-targeting ultra-small hybrid nanoparticles (Pep-PPIX-Baic NPs) composed of an adipose-targeting peptide, Fe3+, a photosensitizer (protoporphyrin IX), and a browning agent (baicalin) are introduced. Pep-PPIX-Baic NPs have been designed to simultaneously enhance the photodynamic effect and induce browning. After intravenous injection in obese mice, the hybrid nanoparticles can specifically accumulate in white adipose tissues, especially those rich in blood supply, and drive adipose reduction owing to the synergy of the PDT effect and baicalin browning induction. Overall, Pep-PPIX-Baic NPs exhibited superior anti-obesity potential through PDT synergistic with adipose browning induction. The designed multifunctional adipose-targeting hybrid nanoparticles present a prospective nanoplatform for obesity treatment.


Assuntos
Nanopartículas , Fotoquimioterapia , Camundongos , Animais , Estudos Prospectivos , Obesidade/tratamento farmacológico , Tecido Adiposo Branco
9.
Chem Rev ; 122(9): 9078-9144, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344663

RESUMO

In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Catálise , Humanos , Estruturas Metalorgânicas/química , Metais/química , Porosidade
10.
Angew Chem Int Ed Engl ; 63(33): e202406956, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38713527

RESUMO

Supramolecular assembly frameworks (SAFs) represent a new category of porous materials, utilizing non-covalent interactions, setting them apart from metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). This category includes but is not restricted to hydrogen-bonded organic frameworks and supramolecular organic frameworks. SAFs stand out for their outstanding porosity, crystallinity, and stability, alongside unique dissolution-recrystallization dynamics that enable significant structural and functional modifications. Crucially, their non-covalent assembly strategies allow for a balanced manipulation of porosity, symmetry, crystallinity, and dimensions, facilitating the creation of advanced crystalline porous materials unattainable through conventional covalent or coordination bond synthesis. Despite their considerable promise in overcoming several limitations inherent to MOFs and COFs, particularly in terms of solution-processability, SAFs have received relatively little attention in recent literature. This Minireview aims to shed light on standout SAFs, exploring their design principles, synthesis strategies, and characterization methods. It emphasizes their distinctive features and the broad spectrum of potential applications across various domains, aiming to catalyze further development and practical application within the scientific community.

11.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078602

RESUMO

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

12.
J Am Chem Soc ; 145(11): 6100-6111, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36898039

RESUMO

Privileged diphosphine ligands that chelate many transition metals to form stable chelation complexes are essential in a variety of catalytic processes. However, the exact identity of the catalytically active moieties remains ambiguous because the chelated metal catalysts may undergo rearrangement during catalysis to produce monophosphine-metal complexes, which are hard to isolate and evaluate the activities. By taking advantage of the isolation of two phosphorus atoms, we demonstrate here the successful construction of chiral monophosphine-Ir/Ru complexes of diphosphine ligands in covalent organic frameworks (COFs) for enantioselective hydrogenation. By condensation of the tetraaldehyde of enantiopure MeO-BIPHEP and linear aromatic diamines, we prepare two homochiral two-dimensional COFs with ABC stacking, in which the two P atoms of each diphosphine are separated and fixed far apart. Post-synthetic metalations of the COFs thus afford the single-site Ir/Ru-monophosphine catalysts, in contrast to the homogeneous chelated analogues, that demonstrated excellent catalytic and recyclable performance in the asymmetric hydrogenation of quinolines and ß-ketoesters, affording up to 99.9% enantiomeric excess. Owing to the fact that the porous catalyst is capable of adsorbing and concentrating hydrogen, the catalytic reactions are promoted under ambient/medium pressure, which are typically performed under high pressure for homogeneous catalysis. This work not only shows that monophosphine-metal complexes of diphosphines can be catalytically active centers for asymmetric hydrogenation reactions but also provides a new strategy to prepare new types of privileged phosphine-based heterogeneous catalysts.

13.
J Am Chem Soc ; 145(25): 13869-13878, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37311062

RESUMO

The interplay of primary organic ligands and inorganic secondary building units (SBUs) has led to a continual boom of reticular chemistry, particularly metal-organic frameworks (MOFs). Subtle variations of organic ligands can have a significant impact on the ultimate structural topology and consequently, the material's function. However, the role of ligand chirality in reticular chemistry has rarely been explored. In this work, we report the organic ligand chirality-controlled synthesis of two zirconium-based MOFs (Spiro-1 and Spiro-3) with distinct topological structures as well as a temperature-controlled formation of a kinetically stable phase (Spiro-4) based on the carboxylate-functionalized inherently axially chiral 1,1'-spirobiindane-7,7'-phosphoric acid ligand. Specifically, Spiro-1 is a homochiral framework comprising only enantiopure S-spiro ligands and has a unique 4,8-connected sjt topology with large 3D interconnected cavities, while Spiro-3 contains equal amounts of S- and R-spiro ligands, resulting in a racemic framework of 6,12-connected edge-transitive alb topology with narrow channels. Interestingly, the kinetic product Spiro-4 obtained with racemic spiro ligands is built of both hexa- and nona-nuclear zirconium clusters acting as 9- and 6-connected nodes, respectively, giving rise to a newly discovered azs net. Notably, the preinstalled highly hydrophilic phosphoric acid groups combined with large cavity, high porosity, and outstanding chemical stability endow Spiro-1 with remarkable water vapor sorption performance, whereas Spiro-3 and Spiro-4 show poor performances due to inappropriate pore systems and structural fragility upon the water adsorption/desorption process. This work highlights the important role of ligand chirality in manipulating the framework topology and function and would further enrich the development of reticular chemistry.

14.
J Am Chem Soc ; 145(49): 26890-26899, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037882

RESUMO

Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.

15.
J Am Chem Soc ; 145(34): 18956-18967, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37596711

RESUMO

The separation of enantiomers using high-performance chromatography technologies represents great importance and interest. In this aspect, ß-cyclodextrin (ß-CD) and its derivatives have been extensively studied as chiral stationary phases (CSPs). Nevertheless, ß-CD that was immobilized on a traditional matrix often exhibited low stabilities and limited operating ranges. Recently, covalent organic frameworks (COFs) with highly ordered nanopores are emerging as promising CSPs for enantioseparations, but their practical applications are still hampered by the difficulty of monomer and COF synthesis. Herein, two ß-CD-driven COFs are synthesized via a fast and facile plasma-induced polymerization combined postsynthesis modification strategy. The precisely defined COF channels enhanced the accessibility of the accommodated ß-CD to the analytes and acted as robust protective barriers to safeguard the ß-CD from harsh environments. Therefore, the ß-CD-modified COFs can be potentially general CSPs for extensive enantioseparation in both gas chromatography and high-performance liquid chromatography, and a wide range of racemates were separated. Compared to the commonly employed commercial chiral columns, these COF-based columns exhibited comparable resolution capability and superior application versatility. This work integrates the advantages and overcomes the defects of COFs and ß-CD, thus advancing COFs as platforms for chiral selector modification and giving great promise for practical chromatographic enantioseparation.

16.
Acc Chem Res ; 54(1): 194-206, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337867

RESUMO

Chirality is a pervasive structural feature of nature and crucial to the organization and function of nearly all biological systems. At the molecular level, the biased availability of enantiomers in nucleic and amino acids forms the basis for asymmetry. However, chirality expression in natural systems remains complex and intriguing across differing length scales. The translation of chirality toward synthetic systems therefore not only is crucial for fundamental understanding but also may address key challenges in biochemistry and pharmacology. From a structural viewpoint, a fascinating class of cavity-containing supramolecular assemblies, homochiral metal-organic complexes (MOCs), provides a good opportunity to study enantioselective processes. Chiral MOCs are constructed by coordination-driven self-assembly, wherein relatively simple molecular precursors are allowed to assemble into structurally well-defined two-dimensional (2D) metallacycles or 3D metallacages spontaneously with complex and varied functions. These aesthetically appealing structures present nanocavities with space-restricted chiral microenvironments capable of interacting distinctly with molecularly asymmetric guests, which is highly beneficial to explore the relay of chiral information from locally chiral molecules to globally chiral supramolecules, which is a significant challenge.In this Account, we specifically discuss our research toward rationally designed, synthetically accessible chiral MOCs over the past 12 years. The globally supramolecular chirality demonstrated by these well-defined MOCs prominently exceeds the constitutive molecular chirality of the components. First, we discuss chirality transfer and amplification in the context of induction and transmission from the constituent organic ligands of self-assembled chiral metallacycles. The creation of subtly chiral microenvironments in the metallacyclic architectures results from a tiny conformational bias of inner hydrophobic groups, subsequently allowing them to interact very specifically with one enantiomer over the other, thus imparting outstanding enantioseparation properties. Second, we have designed a series of chiral metallacycles and helical metallacages that are able to deploy chiral NH groups with available hydrogen bonding capacity, together with hydrophobic/CH-π interactions, bringing about cooperativity for binding of chiral substrates. It turns out that they can be used as artificial chiral receptors capable of exceptionally high enantiorecognition toward a wide range of biologically relevant molecules. Third, we recently developed a group of highly stable chiral metallacages that feature a catalytically confined nanospace with potential as supramolecular asymmetric catalysts. It has been suggested that the use of molecularly nanocaged chiral hosts in solution to substantially increase reactivity and enantioselectivity compared with the unconfined reactions, highlighting the intermetallic synergy, rationalizes the remarkable catalytic performance. Finally, we discuss our personal perspectives on the promises, opportunities, and key issues toward the future development of chiral MOCs. Needless to say that the fundamental understanding of the translation of chirality from molecular to supramolecular to macroscopic scales is crucial to unveil biological mechanisms. We hope the described supramolecular chirality of MOCs could be extendable to develop new and valuable chiral materials in chemistry, medicine, and beyond.

17.
J Am Chem Soc ; 143(42): 17316-17336, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34618443

RESUMO

The exploration of chiral crystalline porous materials, such as metal-organic complexes (MOCs) or metal-organic frameworks (MOFs), has been one of the most exciting recent developments in materials science owing to their widespread applications in enantiospecific processes. However, achieving specific tight-affinity binding and remarkable enantioselectivity toward important biomolecules is still challenging. Perhaps most critically, the lack of adaptability, compatibility, and processability in these materials severely impedes practical applications in chemical engineering and biological technology. In this Perspective, artificial metal-peptide assemblies (MPAs), which are achieved by the assembly of peptides and metals with nanometer-sized cavities or pores, is a new development that could address the current bottlenecks of chiral porous materials. Bioinspired assembly of pore-forming MPAs is not foreign to biological systems and has granted scientists an unprecedented level of control over the chiral recognition sites, conformational flexibility, cavity sizes, and hydrophilic segments through ultrafine-tuning of peptide-derived linkers. We will specifically discuss exemplary MPAs including structurally well-defined metal-peptide complexes and highly crystalline metal-peptide frameworks. With insights from these structures, the peptide assembly and folding by the closer cooperation of metal coordination and noncovalent interactions can create adaptable protein-like nanocavities undergoing a myriad of conformational variations that is reminiscent of enzymatic pockets. We also consider challenges to advancing the field, where the deployment of side-chain groups and manipulation of amino acid sequences are more likely to access the programmable, genetically encodable peptide-mediated porous materials, thus contributing to the enhanced enantioselective recognition as well as enabling key biochemical processes in next-generation versatile biomimetic materials.


Assuntos
Complexos de Coordenação/química , Substâncias Macromoleculares/química , Metais/química , Peptídeos/química , Catenanos/química , Complexos de Coordenação/síntese química , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/síntese química , Porosidade , Conformação Proteica , Estereoisomerismo
18.
J Am Chem Soc ; 143(49): 20939-20951, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851640

RESUMO

Natural transport channels (or carriers), such as aquaporins, are a distinct type of biomacromolecule capable of highly effective transmembrane transport of water or ions. Such behavior is routine for biology but has proved difficult to achieve in synthetic systems. Perhaps most significantly, the enantioselective transmembrane transport of biomolecules is an especially challenging problem both for chemists and for natural systems. Herein, a group of homochiral zirconium metal-organic cages with four triangular opening windows have been proposed as artificial biomolecular channels for enantioselective transmembrane transport of natural amino acids. These structurally well-defined coordination cages are assembled from six synthetically accessible BINOL-derived chiral ligands as spacers and four n-Bu3-Cp3Zr3 clusters as vertices, forming tetrahedral-shaped architectures that feature an intrinsically chiral cavity decorated with an array of specifically positioned binding sites mediated from phenol to phenyl ether to crown ether groups. Fascinatingly, the transformation of single-molecule chirality to global supramolecular chirality within the space-restricted chiral microenvironments accompanies unprecedented chiral amplification, leading to the enantiospecific recognition of amino acids. By virtue of the highly structural stability and excellent biocompatibility, the orientation-independent cages can be molecularly embedded into lipid membranes, biomimetically serving as single-molecular chiral channels for polar-residue amino acids, with the properties that cage-1 featuring hydroxyl groups preferentially transports the l-asparagine, whereas cage-2 attaching crown ether groups spontaneously favor transporting d-arginine. We therefore develop a new type of self-assembled system that can potentially mimic the functions of transmembrane proteins in nature, which is a realistic candidate for further biomedical applications.


Assuntos
Aminoácidos/metabolismo , Transporte Biológico/efeitos dos fármacos , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Aminoácidos/química , Teoria da Densidade Funcional , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/metabolismo , Modelos Químicos , Fosfatidilcolinas/química , Estereoisomerismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Zircônio/química
19.
Angew Chem Int Ed Engl ; 60(15): 8035-8048, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33075210

RESUMO

Hydrogen bonding is a key governing force in molecular recognition, notably in biological systems. While it has been studied and exploited by supramolecular chemists for many years, most of this work has been conducted in organic solvents. Investigations in water, the biological solvent, have proceeded more slowly, largely because the interaction is weakened by solvation and less easy to detect. Recently it has become appreciated that the problems should be addressed, and work towards the deployment of H-bonding in water has accelerated. This Minireview discusses a range of synthetic receptors designed to bind organic molecules in aqueous media by combining hydrogen bonding with hydrophobic interactions. Some of these systems are capable of high affinities and selectivities, raising the hope of biomedical applications in the near future.

20.
Angew Chem Int Ed Engl ; 60(30): 16568-16575, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33939865

RESUMO

Here we report the formation of an unexpected and unique family of chiral helicates. Crystal structures show that these triple-stranded ZnII2 L3 complexes are held together by subcomponent assembly of axially chiral diamine-functionalized 1,1'-biphenol ditopic with 2-formylpyridine and ZnII . Specifically, the molecular helicity of the complexes can be controlled by the absolute configurations of the bimetallic vertices, which has been shown to be homoconfiguration (ΔΔ) or mesomeric configuration (ΔΛ), depending critically on the bulky groups and length of the spacers. Fascinatingly, in this system we can engineer the space-restricted chiral microenvironments with varied polar and apolar moieties, which profoundly influence the binding affinities and chiral discrimination properties of the helicates, leading to highly enantio- and helix-sense-selective recognition for chiral amino alcohols (up to 9.35). This work reveals the transformation of single-molecule chirality to global supramolecular chirality within well-defined helicates and demonstrates that their chiral discrimination are highly dependent on the superior microenvironments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA