Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 782, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175012

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. Osteocalcin plays an important role in energy metabolism. In this study, we investigated the mechanism of action of chemically synthesized osteocalcin (csOCN) in ameliorating NAFLD. We demonstrated for the first time that csOCN attenuates lipid accumulation in the liver and hepatocytes by modulating CD36 protein expression. In addition, we found that the expression of p-AMPK, FOXO1 and BCL6 decreased and the expression of CD36 increased after OA/PA induction compared to the control group, and these effects were reversed by the addition of csOCN. In contrast, the therapeutic effect of csOCN was inhibited by the addition of AMPK inhibitors and BCL6 inhibitors. This finding suggested that csOCN regulates CD36 expression via the AMPK-FOXO1/BCL6 axis. In NAFLD mice, oral administration of csOCN also activated the AMPK pathway and reduced CD36 expression. Molecular docking revealed that osteocalcin has a docking site with CD36. Compared to oleic acid and palmitic acid, osteocalcin bound more strongly to CD36. Laser confocal microscopy results showed that osteocalcin colocalized with CD36 at the cell membrane. In conclusion, we demonstrated the regulatory role of csOCN in fatty acid uptake pathways for the first time; it regulates CD36 expression via the AMPK-FOXO1/BCL6 axis to reduce fatty acid uptake, and it affects fatty acid transport by may directly binding to CD36. There are indications that csOCN has potential as a CD36-targeted drug for the treatment of NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP , Antígenos CD36 , Proteína Forkhead Box O1 , Hepatopatia Gordurosa não Alcoólica , Osteocalcina , Proteínas Proto-Oncogênicas c-bcl-6 , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos CD36/metabolismo , Proteína Forkhead Box O1/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Osteocalcina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Cancer Cell Int ; 24(1): 263, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054484

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a type of breast cancer that is negative for oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, is highly malignant and aggressive, lacks of corresponding targeted therapy, and has a relatively poor prognosis. Therefore, understanding the mechanism of TNBC development and formulating effective treatment strategies for inducing cell death are still urgent tasks in the treatment of TNBC. Research has shown that uncarboxylated osteocalcin can promote the proliferation of prostate cancer, lung adenocarcinoma and TNBC cells, but the mechanism by which GluOC affects TNBC growth and metastasis needs further study. METHODS: MDA-MB-231 breast cancer cells were used for in vitro cell analysis. Key target molecules or pathways were identified by RNA sequencing, and migration ability was detected by scratch assays, Transwell assays, cell adhesion assays and western blot analysis. Fluorescence staining, colony detection, qRT‒PCR and flow cytometry were used to detect apoptosis, oxidative stress, the cell cycle and the stemness of cancer cells, and a xenotransplantation model in BALB/C nude mice was used for in vivo analysis. RESULTS: This study demonstrated that GluOC facilitates the migration of MDA-MB-231 breast cancer cells through the ROCK1/MYPT1/MLC2 signalling pathway and promotes the proliferation of TNBC cells via the ROCK1/JAK2/PIK3CA/AKT signalling pathway. Experiments in nude mice demonstrated that GluOC promoted tumour cell proliferation and metastasis in tumour-bearing mice, which further clarified the molecular mechanism of TNBC growth and invasion. CONCLUSION: Our findings highlight the importance of GluOC in driving TNBC progression and its association with poor patient outcomes. This study clarifies the functional effects of GluOC on TNBC growth, providing insight into the molecular basis of TNBC and potentially providing new ideas for developing targeted therapies to improve patient outcomes.

3.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764494

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the primary chronic liver disease worldwide, mainly manifested by hepatic steatosis. Hepatic lipids may be derived from dietary intake, plasma free fatty acid (FFA) uptake, or hepatic de novo lipogenesis (DNL). Currently, cellular and animal models of hepatocellular steatosis are widely used to study the pathogenesis of NAFLD and to investigate therapeutic agents. However, whether there are differences between the in vivo and in vitro models of the mechanisms that cause lipid accumulation has not been reported. We used OA/PA-induced NCTC 1469 cells and high-fat-diet-fed C57BL/6J mice to simulate a hepatocyte steatosis model of NAFLD and to detect indicators related to FFA uptake and DNL. In addition, when serological indicators were analysed in the mouse model, it was found that serum FASN levels decreased. The results revealed that, in the cellular model, indicators related to DNL were decreased, FASN enzyme activity was unchanged, and indicators related to FFA uptake were increased, including the high expression of CD36; while, in the animal model, indicators related to both FFA uptake and de novo synthesis were increased, including the high expression of CD36 and the increased protein levels of FASN with enhanced enzyme activity. In addition, after an analysis of the serological indicators in the mouse model, it was found that the serum levels of FASN were reduced. In conclusion, the OA/PA-induced cellular model can be used to study the mechanism of FFA uptake, whereas the high-fat-diet-induced mouse model can be used to study the mechanism of FFA uptake and DNL. Combined treatment with CD36 and FASN may be more effective against NAFLD. FASN in the serum can be used as one of the indicators for the clinical diagnosis of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácido Oleico , Camundongos , Animais , Camundongos Endogâmicos C57BL , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Dieta Hiperlipídica/efeitos adversos , Hepatócitos , Modelos Animais de Doenças , Antígenos CD36 , Ácidos Graxos não Esterificados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA