Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37044097

RESUMO

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Assuntos
Citoesqueleto , Eritrócitos , Animais , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Espectrina/análise , Espectrina/metabolismo , Suínos
2.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36413996

RESUMO

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Assuntos
Proteínas de Algas , Chlamydomonas , Cloroplastos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Membranas Intracelulares/metabolismo , Transporte Proteico , Chlamydomonas/química , Chlamydomonas/citologia , Complexos Multiproteicos/metabolismo , Proteínas de Algas/metabolismo
3.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
4.
Mol Cell ; 79(6): 963-977.e3, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32735772

RESUMO

Autophagic degradation of the endoplasmic reticulum (ER-phagy) is triggered by ER stress in diverse organisms. However, molecular mechanisms governing ER stress-induced ER-phagy remain insufficiently understood. Here we report that ER stress-induced ER-phagy in the fission yeast Schizosaccharomyces pombe requires Epr1, a soluble Atg8-interacting ER-phagy receptor. Epr1 localizes to the ER through interacting with integral ER membrane proteins VAPs. Bridging an Atg8-VAP association is the main ER-phagy role of Epr1, as it can be bypassed by an artificial Atg8-VAP tether. VAPs contribute to ER-phagy not only by tethering Atg8 to the ER membrane, but also by maintaining the ER-plasma membrane contact. Epr1 is upregulated during ER stress by the unfolded protein response (UPR) regulator Ire1. Loss of Epr1 reduces survival against ER stress. Conversely, increasing Epr1 expression suppresses the ER-phagy defect and ER stress sensitivity of cells lacking Ire1. Our findings expand and deepen the molecular understanding of ER-phagy.


Assuntos
Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Proteínas R-SNARE/genética , Autofagossomos/metabolismo , Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica/genética , Proteólise , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Resposta a Proteínas não Dobradas/genética
5.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567997

RESUMO

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/genética , RNA Interferente Pequeno/genética , Motivos de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Genoma Helmíntico/genética , Ligação Proteica , Proteômica , RNA Interferente Pequeno/biossíntese
6.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031990

RESUMO

Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Drosophila/metabolismo , Tunicamicina/metabolismo , Transativadores/metabolismo , Proliferação de Células , Proteínas Nucleares/metabolismo , Homeostase , Drosophila melanogaster/metabolismo
7.
PLoS Biol ; 21(12): e3002421, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048304

RESUMO

Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation. We identify the SAD-1 kinase as a regulator of SYD-2 phase separation and determine presynaptic assembly is impaired in sad-1 mutants and increased by overactivation of SAD-1. Using phosphoproteomics, we find SAD-1 phosphorylates SYD-2 on 3 sites that are critical to activate phase separation. Mechanistically, SAD-1 phosphorylation relieves a binding interaction between 2 folded domains in SYD-2 that inhibits phase separation by an intrinsically disordered region (IDR). We find synaptic cell adhesion molecules localize SAD-1 to nascent synapses upstream of active zone formation. We conclude that SAD-1 phosphorylates SYD-2 at developing synapses, activating its phase separation and active zone assembly.


Assuntos
Proteínas de Caenorhabditis elegans , Terminações Pré-Sinápticas , Animais , Terminações Pré-Sinápticas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sinapses/metabolismo , Caenorhabditis elegans/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
8.
PLoS Biol ; 21(11): e3002372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939137

RESUMO

Selective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8. However, ER-phagy/nucleophagy cargos fail to reach the vacuole. Instead, nucleus- and cortical-ER-derived membrane structures not enclosed within autophagosomes accumulate in the cytoplasm. Intriguingly, the outer membranes of nucleus-derived structures remain continuous with the nuclear envelope-ER network, suggesting a possible outer membrane fission defect during cargo separation from source compartments. We find that the ER-phagy role of Yep1 relies on its abilities to self-interact and shape membranes and requires its C-terminal amphipathic helices. Moreover, we show that human REEP1-4 and budding yeast Atg40 can functionally substitute for Yep1 in ER-phagy, and Atg40 is a divergent ortholog of Yep1 and REEP1-4. Our findings uncover an unexpected mechanism governing the autophagosomal enclosure of ER-phagy/nucleophagy cargos and shed new light on the functions and evolution of REEP family proteins.


Assuntos
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Autofagia/genética , Retículo Endoplasmático/metabolismo , Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Membrana Transportadoras/metabolismo
9.
Traffic ; 24(12): 552-563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642208

RESUMO

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Assuntos
Proteínas de Drosophila , Animais , Polaridade Celular , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
10.
EMBO J ; 40(15): e107497, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34169534

RESUMO

In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Domínios Proteicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
11.
Mol Cell ; 66(5): 581-596.e6, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552615

RESUMO

The action of DNA topoisomerase II (Top2) creates transient DNA breaks that are normally concealed inside Top2-DNA covalent complexes. Top2 poisons, including ubiquitously present natural compounds and clinically used anti-cancer drugs, trap Top2-DNA complexes. Here, we show that cells actively prevent Top2 degradation to avoid the exposure of concealed DNA breaks. A genome-wide screen revealed that fission yeast cells lacking Rrp2, an Snf2-family DNA translocase, are strongly sensitive to Top2 poisons. Loss of Rrp2 enhances SUMOylation-dependent ubiquitination and degradation of Top2, which in turn increases DNA damage at sites where Top2-DNA complexes are trapped. Rrp2 possesses SUMO-binding ability and prevents excessive Top2 degradation by competing against the SUMO-targeted ubiquitin ligase (STUbL) for SUMO chain binding and by displacing SUMOylated Top2 from DNA. The budding yeast homolog of Rrp2, Uls1, plays a similar role, indicating that this genome protection mechanism is widely employed, a finding with implications for cancer treatment.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Instabilidade Genômica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Sumoilação , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Resistência a Medicamentos , Etoposídeo/farmacologia , Genoma Fúngico/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Inibidores da Topoisomerase II/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Proc Natl Acad Sci U S A ; 119(26): e2200158119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733257

RESUMO

Mitochondrial preproteins synthesized in cytosol are imported into mitochondria by a multisubunit translocase of the outer membrane (TOM) complex. Functioned as the receptor, the TOM complex components, Tom 20, Tom22, and Tom70, recognize the presequence and further guide the protein translocation. Their deficiency has been linked with neurodegenerative diseases and cardiac pathology. Although several structures of the TOM complex have been reported by cryoelectron microscopy (cryo-EM), how Tom22 and Tom20 function as TOM receptors remains elusive. Here we determined the structure of TOM core complex at 2.53 Å and captured the structure of the TOM complex containing Tom22 and Tom20 cytosolic domains at 3.74 Å. Structural analysis indicates that Tom20 and Tom22 share a similar three-helix bundle structural feature in the cytosolic domain. Further structure-guided biochemical analysis reveals that the Tom22 cytosolic domain is responsible for binding to the presequence, and the helix H1 is critical for this binding. Altogether, our results provide insights into the functional mechanism of the TOM complex recognizing and transferring preproteins across the mitochondrial membrane.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Receptores Citoplasmáticos e Nucleares , Microscopia Crioeletrônica , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química
13.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115400

RESUMO

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Assuntos
Células-Tronco Adultas/metabolismo , Proliferação de Células/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fator de Transcrição E2F1/metabolismo , Intestinos/metabolismo , Proibitinas/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Interferência de RNA/fisiologia , Transdução de Sinais/fisiologia
14.
J Lipid Res ; 65(6): 100553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704027

RESUMO

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.


Assuntos
Caenorhabditis elegans , Isoenzimas , Esfingolipídeos , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimologia , Esfingolipídeos/biossíntese , Esfingolipídeos/metabolismo , Isoenzimas/metabolismo , Isoenzimas/genética , Espectrometria de Massas em Tandem , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ceramidas/metabolismo , Ceramidas/biossíntese , Interferência de RNA , Cromatografia Líquida
15.
J Proteome Res ; 23(2): 550-559, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38153036

RESUMO

In bottom-up proteomics, peptide-spectrum matching is critical for peptide and protein identification. Recently, deep learning models have been used to predict tandem mass spectra of peptides, enabling the calculation of similarity scores between the predicted and experimental spectra for peptide-spectrum matching. These models follow the supervised learning paradigm, which trains a general model using paired peptides and spectra from standard data sets and directly employs the model on experimental data. However, this approach can lead to inaccurate predictions due to differences between the training data and the experimental data, such as sample types, enzyme specificity, and instrument calibration. To tackle this problem, we developed a test-time training paradigm that adapts the pretrained model to generate experimental data-specific models, namely, PepT3. PepT3 yields a 10-40% increase in peptide identification depending on the variability in training and experimental data. Intriguingly, when applied to a patient-derived immunopeptidomic sample, PepT3 increases the identification of tumor-specific immunopeptide candidates by 60%. Two-thirds of the newly identified candidates are predicted to bind to the patient's human leukocyte antigen isoforms. To facilitate access of the model and all the results, we have archived all the intermediate files in Zenodo.org with identifier 8231084.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteínas , Modelos Teóricos , Proteômica/métodos , Algoritmos
16.
J Biol Chem ; 299(2): 102887, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36626982

RESUMO

The O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates intracellular O-GlcNAcylation modification. O-GlcNAcylation occurs on Ser/Thr residues and is important for numerous physiological processes. OGT is essential for dividing mammalian cells and is involved in many human diseases; however, many of its fundamental substrates during cell division remain unknown. Here, we focus on the effect of OGT on polo-like kinase 1 (PLK1), a mitotic master kinase that governs DNA replication, mitotic entry, chromosome segregation, and mitotic exit. We show that PLK1 interacts with OGT and is O-GlcNAcylated. By utilizing stepped collisional energy/higher-energy collisional dissociation mass spectrometry, we found a peptide fragment of PLK1 that is modified by O-GlcNAc. Further mutation analysis of PLK1 shows that the T291A mutant decreases O-GlcNAcylation. Interestingly, T291N is a uterine carcinoma mutant in The Cancer Genome Atlas. Our biochemical assays demonstrate that T291A and T291N both increase PLK1 stability. Using stable H2B-GFP cells, we found that PLK1-T291A and PLK1-T291N mutants display chromosome segregation defects and result in misaligned and lagging chromosomes. In mouse xenograft models, we demonstrate that the O-GlcNAc-deficient PLK1-T291A and PLK1-T291N mutants enhance uterine carcinoma in animals. Hence, we propose that OGT partially exerts its mitotic function through O-GlcNAcylation of PLK1, which might be one mechanism by which elevated levels of O-GlcNAc promote tumorigenesis.


Assuntos
Divisão Celular , Proteínas Serina-Treonina Quinases , Neoplasias Uterinas , Animais , Feminino , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Acilação , Divisão Celular/fisiologia , Mutação , Quinase 1 Polo-Like
17.
J Biol Chem ; 299(6): 104738, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086786

RESUMO

O-linked GlcNAc (O-GlcNAc) is an emerging post-translation modification that couples metabolism with cellular signal transduction by crosstalk with phosphorylation and ubiquitination to orchestrate various biological processes. The mechanisms underlying the involvement of O-GlcNAc modifications in N6-methyladenosine (m6A) regulation are not fully characterized. Herein, we show that O-GlcNAc modifies the m6A mRNA reader YTH domain family 1 (YTHDF1) and fine-tunes its nuclear translocation by the exportin protein Crm1. First, we present evidence that YTHDF1 interacts with the sole O-GlcNAc transferase (OGT). Second, we verified Ser196/Ser197/Ser198 as the YTHDF1 O-GlcNAcylation sites, as described in numerous chemoproteomic studies. Then we constructed the O-GlcNAc-deficient YTHDF1-S196A/S197F/S198A (AFA) mutant, which significantly attenuated O-GlcNAc signals. Moreover, we revealed that YTHDF1 is a nucleocytoplasmic protein, whose nuclear export is mediated by Crm1. Furthermore, O-GlcNAcylation increases the cytosolic portion of YTHDF1 by enhancing binding with Crm1, thus upregulating downstream target (e.g. c-Myc) expression. Molecular dynamics simulations suggest that O-GlcNAcylation at S197 promotes the binding between the nuclear export signal motif and Crm1 through increasing hydrogen bonding. Mouse xenograft assays further demonstrate that YTHDF1-AFA mutants decreased the colon cancer mass and size via decreasing c-Myc expression. In sum, we found that YTHDF1 is a nucleocytoplasmic protein, whose cytosolic localization is dependent on O-GlcNAc modification. We propose that the OGT-YTHDF1-c-Myc axis underlies colorectal cancer tumorigenesis.


Assuntos
Neoplasias Colorretais , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Humanos , Fosforilação , Ubiquitinação , Carcinogênese/genética , Neoplasias Colorretais/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
Br J Cancer ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877108

RESUMO

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.

19.
Anal Chem ; 96(5): 2008-2021, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38276876

RESUMO

Nontargeted lipidomics using liquid chromatography-tandem mass spectrometry can detect thousands of molecules in biological samples. However, the annotation of unknown oxidized lipids is limited to the structures present in libraries, restricting the analysis and interpretation of experimental data. Here, we describe Doxlipid, a computational tool for oxidized lipid annotation that predicts a dynamic MS/MS library for every experiment. Doxlipid integrates three key simulation algorithms to predict libraries and covers 32 subclasses of oxidized lipids from the three main classes. In the evaluation, Doxlipid achieves very high prediction and characterization performance and outperforms the current oxidized lipid annotation methods. Doxlipid, combined with a molecular network, further annotates unknown chemical analogs in the same reaction or pathway. We demonstrate the broad utility of Doxlipid by analyzing oxidized lipids in ferroptosis hepatocellular carcinoma, tissue samples, and other biological samples, substantially advancing the discovery of biological pathways at the trace oxidized lipid level.


Assuntos
Lipídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Lipídeos/análise , Cromatografia Líquida/métodos , Algoritmos , Simulação por Computador
20.
Biochem Biophys Res Commun ; 710: 149918, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598902

RESUMO

Chimeric antigen receptor (CAR)-modified immune cells have emerged as a promising approach for cancer treatment, but single-target CAR therapy in solid tumors is limited by immune escape caused by tumor antigen heterogeneity and shedding. Natural killer group 2D (NKG2D) is an activating receptor expressed in human NK cells, and its ligands, such as MICA and MICB (MICA/B), are widely expressed in malignant cells and typically absent from healthy tissue. NKG2D plays an important role in anti-tumor immunity, recognizing tumor cells and initiating an anti-tumor response. Therefore, NKG2D-based CAR is a promising CAR candidate. Nevertheless, the shedding of MICA/B hinders the therapeutic efficacy of NKG2D-CARs. Here, we designed a novel CAR by engineering an anti-MICA/B shedding antibody 1D5 into the CAR construct. The engineered NK cells exhibited significantly enhanced cytotoxicity against various MICA/B-expressing tumor cells and were not inhibited by NKG2D antibody or NKG2D-Fc fusion protein, indicating no interference with NKG2D-MICA/B binding. Therefore, the developed 1D5-CAR could be combined with NKG2D-CAR to further improve the obstacles caused by MICA/B shedding.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Neoplasias/imunologia , Neoplasias/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA