Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Macromol Rapid Commun ; 45(3): e2300488, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37793367

RESUMO

Low critical solution temperature (LCST) of commonly used thermoresponsive polymers in water is basically dominated by hydrophobic interactions. Herein, a novel thermoresponsive system based on electrostatic interactions is reported. By simply loading aluminum chloride (AlCl3 ) into non-responsive poly(2-hydroxyethyl acrylate) (PHEA) hydrogels, PHEA-Al gels turn to have reversible thermoresponsive behavior between transparent and opaque without any volume change. Further investigations by changing metal ion-polymer compositions unravel the necessity of specific electrostatic interactions, namely, cation-dipole bonding interactions between hydroxy groups and trivalent metal ions. The thermoresponsive hydrogel demonstrates high transparency (≈95%), excellent luminous modulation capability (>98%), and cyclic reliability, suggesting great potential as an energy-saving material. Although LCST control by salt addition is widely known, salt-induced expression of thermoresponsiveness has barely been discussed before. This design provides a new approach of easy fabrication, low cost, and scalability to develop stimuli-responsive materials.


Assuntos
Hidrogéis , Poli-Hidroxietil Metacrilato/análogos & derivados , Polímeros , Hidrogéis/química , Temperatura , Eletricidade Estática , Reprodutibilidade dos Testes , Polímeros/química
2.
Biomacromolecules ; 24(2): 957-966, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716207

RESUMO

Wood has been used in a variety of applications in our daily lives and military industry. Nevertheless, its flammability causes potential fire risks and hazards. Improving the flame retardancy of wood is a challenging task. Herein, a phytic acid-based flame retardant (referred to as AMPA) was synthesized based on supramolecular reactions between melamine and p-amino-benzene sulfonic acid followed by a reaction with phytic acid using deionized water as the solvent. A composite wood was prepared by removing lignin to tailor the unique mesoporous structure of the material, followed by coating AMPA on the surfaces of wood microchannels. The limiting oxygen index of wood has been improved to 52.5% with the addition of 5.6 wt % AMPA. The peak heat release rate for the prepared composite wood was reduced by 81% compared to that for delignified wood, which demonstrates the excellent flame-retardant performance of the prepared composite wood. Furthermore, AMPA and mesoporous structures endow antimicrobial and thermal insulation functions. Hence, this work provides a feasible method for preparing flame-retardant wood-based materials for diversified applications.


Assuntos
Anti-Infecciosos , Retardadores de Chama , Ácido Fítico , Madeira , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Anti-Infecciosos/farmacologia
3.
Soft Matter ; 19(3): 355-360, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598067

RESUMO

To date, poly(vinyl alcohol) (PVA) gels attract tremendous attention because of their potential applications in a wide variety of fields. Here, a novel monocarboxylic acid induction strategy was developed to fabricate tough and thermo-reversible PVA physical gels by introducing monocarboxylic acids into the PVA/dimethyl sulfoxide (DMSO) system. The obtained PVA gels exhibited appropriate crystalline architectures, leading to superior mechanical properties and high transparency. Furthermore, the role of monocarboxylic acids in the formation of PVA physical gels and the effects of alkyl chain length, concentration, and the induction time of monocarboxylic acids on the properties of PVA physical gels were also investigated.

4.
Soft Matter ; 19(28): 5244-5248, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37403976

RESUMO

Here we provide a novel method for fabricating a pH- and thermal-responsive triple-shape memory hydrogel based on a single reversible switch phase. A high-density quadruple hydrogen-bonding ureido-pyrimidinone (UPy) system was introduced into the hydrogel network, which can occur to varied degrees of dissociation under different pH and temperature conditions. Different degrees of dissociation and reassociation can be viewed as different subsets of memory elements to freeze and unfreeze the temporary shapes. Although this class of hydrogels contains only a single transition phase, they feature a large dissociative differential in response to varied external stimuli to provide multiple windows for programming different temporary shapes.

5.
Macromol Rapid Commun ; 44(15): e2300133, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227035

RESUMO

The development of catalyst-free ester-based covalent adaptable networks (CANs) provides a new approach to achieve milder reaction conditions to reprocess thermoset resins. Despite recent advances, however, accelerating network rearrangements requires the introduction of hydroxyl groups into the network. In this study, disulfide bonds are introduced into the CANs to add new kinetically facile pathways to accelerate network rearrangement. Kinetic experiments using small molecule models of the CANs show that the presence of the disulfide bonds can accelerate transesterification. These insights are applied to synthesize new kinds of poly(ß-hydrazide disulfide esters) (PSHEs) using thioctic acyl hydrazine (TAH) as a precursor for ring-opening polymerization with the hydroxyl-free multifunctional acrylates. The PSHE CANs have lower relaxation times (505-652 s) than the polymer containing only ß-hydrazide esters (2903 s). The ring-opening polymerization of TAH improves the crosslinking density, heating resistance deformation temperature, and UV shielding performance of the PSHEs. Thus, this work provides a practical strategy to reduce the reprocessing temperatures of CANs.


Assuntos
Dissulfetos , Ésteres , Ésteres/química , Dissulfetos/química , Acrilatos , Hidrazinas
6.
Macromol Rapid Commun ; 44(3): e2200653, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36200638

RESUMO

In this study, the optical properties of poly(maleic anhydride-alt-vinyl acetate) (PMV) synthesized by different polymerization methods are studied systematically. Compared to self-stabilized precipitation polymerization (pPMV), solution polymerization produces PMV solids (sPMV) with an extraordinarily high quantum yield (QY) of 20.65%. Additionally, redissolving pPMV in good solvents (rPMV) will also help to increase QY. The rising QY of sPMV and rPMV supports the idea that good solvents will reduce the rigidity of polymer chains and promote cluster formation, which is confirmed by lower glass transition temperature (Tg ) and small angle X-ray scatterer (SAXS). The study also finds that PMV exhibits application potentials in white light-emitting diodes (WLEDs) and light conversion film.


Assuntos
Anidridos Maleicos , Solventes , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Nano Lett ; 22(11): 4560-4568, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583326

RESUMO

Polyimide aerogels with mechanical robustness, great compressibility, excellent antifatigue properties, and intriguing functionality have captured enormous attention in diverse applications. Here, enlightened by the xylem parenchyma of dicotyledonous stems, a radially architectured polyimide/MXene composite aerogel (RPIMX) with reversible compressibility is developed by combining the interfacial enhancing strategy and radial ice-templating method. The strong interaction between MXene flakes and polymer can glue the MXene to form continuous lamellae, the ice crystals grow preferentially along the radial temperature gradient can effectively constrain the lamellae to create a biomimetic radial lamellar architecture. As a result, the nature-inspired RPIMX composite aerogel with centrosymmetric lamellar structure and oriented channels manifests excellent mechanical strength, electrical conductivity, and water transporting capability along the longitudinal direction, endowing itself with intriguing applications for accurate human motion monitoring and efficient photothermal evaporation. These exciting properties make the biomimetic RPIMX aerogels promising candidates for flexible piezoresistive sensors and photothermal evaporators.


Assuntos
Gelo , Vapor , Condutividade Elétrica , Humanos , Luz Solar , Xilema
8.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835274

RESUMO

Ion exchange resins are suitable as carriers for immobilized enzymes because of their stable physicochemical properties, appropriate particle size and pore structure, and lower loss in continuous operation. In this paper, we report the application of the Ni-chelated ion exchange resin in the immobilization of His-tagged enzyme and protein purification. Acrylic weak acid cation exchange resin (D113H) was selected from four cationic macroporous resins that could chelate the transition metal ion Ni. The maximum adsorption capacity of Ni was ~198 mg/g. Phosphomannose isomerase (PMI) can be successfully immobilized on Ni-chelated D113H from crude enzyme solution through chelation of transition metal ions with the His-tag on the enzyme. The maximum amount of immobilized PMI on the resin was ~143 mg/g. Notably, the immobilized enzyme showed excellent reusability and maintained 92% of its initial activity with 10 cycles of catalytic reaction. In addition, PMI was successfully purified using an affinity chromatography column prepared by Ni-chelated D113H, which showed the potential for the immobilization and purification process to be realized in one step.


Assuntos
Enzimas Imobilizadas , Resinas de Troca Iônica , Proteínas , Quelantes/química , Cromatografia de Afinidade/métodos , Enzimas Imobilizadas/química , Indicadores e Reagentes , Proteínas/isolamento & purificação
9.
Chembiochem ; 23(4): e202100497, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34958513

RESUMO

Self-stable precipitation polymerization was used to prepare an enzyme-immobilized microsphere composite. Phosphomannose isomerase (PMI) with His-tag was successfully immobilized on Ni2+ charged pyridine-derived particles. The maximum amount of PMI immobilized on such particles was ∼184 mg/g. Compared with free enzyme, the activity of the immobilized enzymes was significantly improved. In addition, the immobilized enzymes showed a much better thermostability than free enzymes. At the same time, the immobilized enzymes can be reused for multiple reaction cycles. We observed that the enzyme activity did not decrease significantly after six cycles. We conclude that the pyridine-derived particles can be used to selectively immobilize His-tagged enzymes, which can couple the enzyme purification and catalysis steps and improve the efficiency of enzyme-catalyzed industrial processes.


Assuntos
Quelantes/metabolismo , Histidina/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Nanopartículas/metabolismo , Níquel/metabolismo , Linhagem Celular Tumoral , Quelantes/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Histidina/química , Humanos , Manose-6-Fosfato Isomerase/química , Nanopartículas/química , Níquel/química
10.
Langmuir ; 38(51): 16156-16162, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36520933

RESUMO

This paper established a new kind of polyimide/C-MXene composite films with a microcellular structure for electromagnetic interference shielding through solution mixing and liquid phase separation methods. Polyimide was used as the resin material, Ti3C2Tx MXene was used as the electromagnetic wave-shielding medium, l-citrulline was used as the surface modification agent, ferric trichloride (especially the ferric ion) was used as the cross-linking agent between the polyimide and modified C-MXene, and a microcell was used as the shielding structure. By adjusting the content of ferric ions, the foam structure, mechanical properties, thermal conductivity, and electromagnetic interference shielding efficiency of the polyimide/C-MXene microcellular composite film could be controlled. The higher the ferric ion content, the smaller the foam size and the higher the electromagnetic interference shielding efficiency. With increasing ferric ion content, the tensile strength and Young's modulus appeared to first increase and then decrease; when the ferric ion content was 0.8 wt %, the tensile strength and Young's modulus reached their maximum values, which were 10.06 and 325.29 MPa, respectively. In addition, with increasing ferric ion content, the thermal insulation showed first decreasing and then increasing tendency; the lowest thermal conductivity was 0.17 W/(m·K) when the ferric ion content was 0.8 wt %.

11.
Soft Matter ; 18(30): 5562-5567, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861560

RESUMO

Photothermally triggered shape memory polymer materials are usually prepared by dispersing photothermally responsive fillers or compounds into shape memory polymer matrixes through physical blending, while the migration and non-biodegradability of the fillers limit their potential applications (e.g., in the biomedical field). Here, we synthesized a new type of porphyrin-based amphiphilic random copolymer bearing a reactive moiety of carbonyl group by co-polymerizing methyl methacrylate (MMA), butyl acrylate (BA), diacetone acrylamide (DAAM), acrylic acid (AA) and double-bonded vinyl porphyrin monomers, followed by induced self-assembly in aqueous solution to give rise to amphiphilic random copolymer nanoparticles. The nanoparticles were further crosslinked by means of adipic dihydrazide (ADH) to fabricate the photothermally triggered one-component shape memory polymer material. Compared with the most-studied multi-phase/multi-component shape memory polymer materials, the porphyrin moiety, playing the role of a photo-to-heat converter, covalently bonded into the polymer structure would certainly make it more homogeneous and more stable in principle.

12.
Biomacromolecules ; 22(10): 4228-4236, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499468

RESUMO

Fabricating advanced polymer composites with remarkable mechanical and thermal conductivity performances is desirable for developing advanced devices and equipment. In this study, a novel strategy to prepare anisotropic wood-based scaffolds with a naturally aligned microchannel structure from balsa wood is demonstrated. The wood microchannels were coated with polydopamine-surface-modified small graphene oxide (PGO) nanosheets via assembly. The highly aligned porous microstructures, with thin wood cell walls and large voids along the cellulose microchannels, allow polymers to enter, resulting in the fabrication of the wood-polymer nanocomposite. The tensile stiffness and strength of the resulting nanocomposite reach 8.10 GPa and 90.3 MPa with a toughness of 5.0 MJ m-3. The thermal conductivity of the nanocomposite is improved significantly by coating a PGO layer onto the wood scaffolds. The nanocomposite exhibits not only ultrahigh thermal conductivity (in-plane about 5.5 W m-1 K-1 and through-plane about 2.1 W m-1 K-1) but also satisfactory electrical insulation (volume resistivity of about 1015 Ω·cm). Therefore, the results provide a strategy to fabricate thermal management materials with excellent mechanical properties.


Assuntos
Nanocompostos , Madeira , Celulose , Condutividade Térmica
13.
Phys Chem Chem Phys ; 23(20): 11774-11783, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33982700

RESUMO

DNA-directed nanoparticle (DNA-NP) systems provide various applications in sensing, medical diagnosis, data storage, plasmonics and photovoltaics. Bonding probability and melting properties are helpful to evaluate the selectivity, thermostability and thermosensitivity of these applications. We investigated the influence of temperature, nanoparticle size, DNA chain length and surface grafting density of DNA on one nanoparticle on the DNA dynamic hybridization percentage and melting properties of DNA-NP assembly systems by molecular dynamics simulation. The high degree of consistency of free energy estimations for DNA hybridization via our theoretical deduction and the nearest-neighbor rule generally used in experiments validates reasonably our DNA model. The melting temperature and thermosensitivity parameter are determined by the sigmoidal melting curves based on hybridization percentage versus temperature. The results indicated that the hybridization percentage presents a downward trend with increasing temperature and nanoparticle size. Applications based on DNA-NP systems with bigger nanoparticle size, such as DNA probes, have better selectivity, thermostability and thermosensitivity. There exist optimal DNA chain length and surface grafting density where the hybridization percentage reaches the maximal value. The melting temperature reaches a maximum at the point of optimal grafting density, while the thermosensitivity parameter presents an upward trend with the increase of grafting density. Several physical quantities consisting of the radial density function, root mean square end-to-end distance, contact distance parameter and effective volume fraction are used to analyse DNA chain conformations and DNA-NP packing in the assembly process. Our findings provide the theoretical basis for the improvement and optimization of applications based on DNA-NP systems.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Nanopartículas/química , Termodinâmica , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
14.
Chemistry ; 26(8): 1846-1855, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31808206

RESUMO

Conducting polymer hydrogels that are capable of contacting with electrolytes at the molecular level, represent an important electrode material. However, the fabrication of self-standing hydrogels merely composed of conducting polymers is still challenging owing to the absence of reliable methods. Herein, a novel and facile macromolecular interaction assisted route is reported to fabricate self-standing hydrogels consisting of polyaniline (PANi: providing high electrochemical activity) and poly(3,4-ethylenedioxythiophene) (PEDOT: enabling high electronic conductivity). Owing to the synergistic effect between them, the self-standing hydrogels possess good mechanical properties and electronic/electrochemical performances, making them an excellent potential electrode for solid-state energy storage devices. A proof-of-concept all-hydrogel-state supercapacitor is fabricated, which exhibits a high areal capacitance of 808.2 mF cm-2 , and a high energy density of 0.63 mWh cm-3 at high power density of 28.42 mW cm-3 , superior to many recently reported conducting polymer hydrogels based supercapacitors. This study demonstrates a novel promising strategy to fabricate self-standing conducting polymer hydrogels.

15.
Biomacromolecules ; 17(11): 3782-3789, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27750002

RESUMO

Melanin, a kind of well-known multifunctional biomacromolecules that are widely distributed in natural sources. In this work, polyurethane (PU)/melanin nanocomposites with enhanced tensile strength and toughness were successfully fabricated via in situ polymerization. It was found that the tensile strength (σ), elongation-at-break (εmax), and toughness (W) were improved from 5.6 MPa, 770%, and 33 MJ/m3 for PU to 51.5 MPa, 1880%, and 413 MJ/m3 for PU/melanin (2 wt %) nanocomposite, respectively. Micromorphology indicated that individualized melanin nanoparticles were specifically linked to the hard domains of PU chains and fine dispersed in matrix. FTIR, DSC, and AFM results suggested melanin induced an improvement in degree of phase separation, which resulted in remarkable enhancements in mechanical properties of PU. However, with further increasing content of melanin, a relatively large-scale phase separation was formed and led to a decrease in mechanical properties of PU. In addition, interactions between melanin and hard segments of PU were increased, leading to a higher TgHS. Moreover, the dynamic mechanical properties and rheological behavior of PU/melanin nanocomposites were further investigated.


Assuntos
Melaninas/química , Nanocompostos/química , Nanopartículas/química , Poliuretanos/química , Melaninas/síntese química , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Poliuretanos/síntese química , Resistência à Tração
16.
Biomacromolecules ; 16(11): 3723-9, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26444105

RESUMO

In this work we report the in situ preparation of fully biobased stereocomplex poly(lactide) (SC-PLA) nanocomposites grafted onto nanocrystalline cellulose (NCC). The stereocomplexation rate by compounding high-molar-mass poly(D-lactide) (PDLA) with comb-like NCC grafted poly(L-lactide) is rather high in comparison with mixtures of PDLA and PLLA. The rapid stereocomplexation was evidenced by a high stereocomplexation temperature (Tc-sc = 145 °C) and a high SC crystallinity (Xc-sc = 38%) upon fast cooling (50 °C/min) from the melt (250 °C for 2 min), which are higher than currently reported values. Moreover, the half-life crystallization time (175-190 °C) of the SC-PLA was shortened by 84-92% in comparison with the PDLA/PLLA blends. The high(er) stereocomplexation rate and the melt stability of the SC in the nanocomposites were ascribed to the nucleation effect of the chemically bonded NCC and the "memory effect" of molecular pairs in the stereocomplex melt because of the confined freedom of the grafted PLLA chains.


Assuntos
Celulose/química , Poliésteres/química , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria , Cristalização , Meia-Vida , Microscopia de Força Atômica , Peso Molecular , Nanoestruturas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Difração de Raios X
17.
Int J Biol Macromol ; 273(Pt 2): 132939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866266

RESUMO

This paper prepared a new kind of carbon dots-polyvinyl alcohol-carboxymethyl cellulose composite film with antibacterial properties. Carbon dots and citric acid were used as cross-linking agents, and polyvinyl alcohol and carboxymethyl cellulose were used as matrices respectively. The mechanical properties, UV shielding performance, thermal stability, antioxidant capability, and antibacterial activities of the carbon dots-polyvinyl alcohol-carboxymethyl cellulose composite film were researched. The prepared carbon dots-polyvinyl alcohol-carboxymethyl cellulose composite film was applied in the strawberry freshness preservation test. And test results indicated that the carbon dots-polyvinyl alcohol-carboxymethyl cellulose composite film could prevent rotting and extend the shelf life of strawberries. This carbon dots-polyvinyl alcohol-carboxymethyl cellulose composite film could be applied in the food active packaging field.


Assuntos
Carbono , Carboximetilcelulose Sódica , Embalagem de Alimentos , Fragaria , Álcool de Polivinil , Carboximetilcelulose Sódica/química , Álcool de Polivinil/química , Embalagem de Alimentos/métodos , Carbono/química , Fragaria/química , Antibacterianos/química , Antibacterianos/farmacologia , Reagentes de Ligações Cruzadas/química , Antioxidantes/química , Antioxidantes/farmacologia , Pontos Quânticos/química
18.
Mater Horiz ; 11(6): 1426-1434, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38264855

RESUMO

Polymers often face a trade-off between stiffness and extensibility-for example, toughening rigid polymers by incorporating plasticizers or flexible polymers leads to strikingly decreased stiffness. Herein, we circumvent this long-standing tricky dilemma in materials science via constructing soft-hard dual nanophases in polymers. As-fabricated dual-nanophase PLA shows a high yield strength of 69.1 ± 4.4 MPa, a large extensibility of 279.1 ± 25.5%, and a super toughness of 115.2 ± 10.3 MJ m-3, which are 1.2, 48 and 82 times, respectively, those of neat PLA. Combined high stiffness, large ductility, and super toughness are unprecedented for PLA and enable bio-sourced PLA to replace petroleum-based resins such as PP, PET and PC. Besides, soft-hard dual nanophases in polymers are rarely reported due to significant constraints in terms of modifier dispersion/aggregation, interfacial regulation, and processing difficulties. The construction strategy described herein, combining controlled annealing and a well-designed plasticizer, can efficiently construct soft-hard dual nanophases in polymers, which will greatly advance the nanostructure design of polymers. More importantly, the proposed strategy for materials design will be widely applicable to industrial manufacturing in terms of nanophase construction and interfacial optimization due to the simplicity and availability at a large scale. We envision that this work offers an innovative and facile strategy to circumvent the trade-off between stiffness and extensibility and to advance the nanostructure design of high-performance polymers in a manner applicable to industrial manufacturing.

19.
Int J Biol Macromol ; 261(Pt 2): 129755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278385

RESUMO

Utilizing antibacterial packaging material is an effective approach to delay fruit rotting and spoilage thereby minimizing financial losses and reducing health harm. However, the barrier and mechanical properties of biodegradable antibacterial packaging materials are barely compatible with transparency. Herein, antimicrobial nanoparticles encapsulating citral (ANPs) were first prepared by emulsification under the stabilization of oxidized dextran (ODE) and ethylene diamine. Then, composite films with high transparency, good water vapor barrier, and mechanical and antibacterial properties for fruits packaging were prepared from chitosan (CS), carboxymethyl-glucan (CMG), poly(vinyl alcohol) (PVA), and ANPs by solvent casting strategy. The synergistic effects of electrostatic interaction and hydrogen bonding could regulate crystalline architecture, generating high transparency of the composite films (90 %). The mechanical properties of the composite film are improved with elongation at break up to 167 % and stress up to 32 MPa. The water vapor barrier property of the film is appropriate to the packed fruit for less weight loss and firmness remaining. Simultaneously, the addition of ANPs endowed the film with excellent antimicrobial and UV-barrier capabilities to reduce fruit mildew, thereby extending the shelf life of fruits. More importantly, the composite polymer solution could be sprayed or dipped directly on fruits as a coating for food storage to improve food shelf life, substantially expanding its ease of use and scope of use.


Assuntos
Monoterpenos Acíclicos , Anti-Infecciosos , Quitosana , Nanopartículas , Glucanos/farmacologia , Álcool de Polivinil/química , Quitosana/química , Frutas , Vapor , Embalagem de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Etanol/farmacologia
20.
Adv Sci (Weinh) ; 11(1): e2304946, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946704

RESUMO

Clusteroluminescence (CL) has recently gained significant attention due to its unique through-space interactions associated with a high dependence on the aggregation of subgroups. These distinct features could easily transform the stimuli into visual fluorescence and monitor the fluctuation of the environment but have not received sufficient attention before. In this work, supramolecular films are designed based on the neutralization reaction of anhydride groups and the self-assembly of dynamic covalent disulfide bonds in NaOH aqueous solution. The self-assembly of hydrophilic carboxylate chromophores and hydrophobic disulfide-containing five-membered rings could be observed by the variation of the aggregation state of carboxylate in CL. Furthermore, the dynamic cross-linking films obtained with water-sensitive carboxylate chromophores could alter the aggregation distance stimulated by surrounding water vapor, causing the emission wavelength to change from 534 to 508 nm by varying the relative humidity. This work not only provides an approach to monitor the self-assembly of clusteroluminogens but also offers new strategies for designing stimuli-responsive materials that utilize the intrinsic features of CL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA