RESUMO
The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.
Assuntos
Anti-Hipertensivos , Transtorno do Deficit de Atenção com Hiperatividade , Comportamento Animal , Captopril , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Ratos Endogâmicos SHR , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Gravidez , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Feminino , Anti-Hipertensivos/farmacologia , Captopril/farmacologia , Masculino , Ratos , Comportamento Animal/efeitos dos fármacos , Labetalol/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipertensão Induzida pela Gravidez/induzido quimicamente , Dopamina/metabolismoRESUMO
BACKGROUND: Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS: We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS: We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS: Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.
Assuntos
Faecalibacterium prausnitzii , Insuficiência Renal Crônica , Animais , Butiratos/farmacologia , Butiratos/uso terapêutico , Modelos Animais de Doenças , Inflamação , Rim/fisiologia , Receptores Acoplados a Proteínas G/genéticaRESUMO
Soybean is one of the most widely grown oilseed crops worldwide. Several unfavorable factors, including salt and salt-alkali stress caused by soil salinization, affect soybean yield and quality. Therefore, exploring the molecular basis of salt tolerance in plants and developing genetic resources for genetic breeding is important. Sucrose non-fermentable protein kinase 1 (SnRK1) belongs to a class of Ser/Thr protein kinases that are evolutionarily highly conserved direct homologs of yeast SNF1 and animal AMPKs and are involved in various abiotic stresses in plants. The GmPKS4 gene was experimentally shown to be involved with salinity tolerance. First, using the yeast two-hybrid technique and bimolecular fluorescence complementation (BiFC) technique, the GmSNF1 protein was shown to interact with the GmPKS4 protein. Second, the GmSNF1 gene responded positively to salt and salt-alkali stress according to qRT-PCR analysis, and the GmSNF1 protein was localized in the nucleus and cytoplasm using subcellular localization assay. The GmSNF1 gene was then heterologously expressed in yeast, and the GmSNF1 gene was tentatively identified as having salt and salt-alkali tolerance function. Finally, the salt-alkali tolerance function of the GmSNF1 gene was demonstrated by transgenic Arabidopsis thaliana, soybean hairy root complex plants overexpressing GmSNF1 and GmSNF1 gene-silenced soybean using VIGS. These results indicated that GmSNF1 might be useful in genetic engineering to improve plant salt and salt-alkali tolerance.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Soja/genética , Glycine max/metabolismo , Álcalis/metabolismo , Saccharomyces cerevisiae/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Arabidopsis/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genéticaRESUMO
Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.
Assuntos
Anti-Hipertensivos/farmacologia , Bactérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Curcumina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Butiratos/sangue , Cardiomegalia/metabolismo , Cardiomegalia/microbiologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Disbiose , Hipertensão/metabolismo , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/metabolismoRESUMO
OBJECTIVE: Urinary tumor necrosis factor-like weak inducer of apoptosis (uTWEAK) has been identified as a candidate biomarker for lupus nephritis (LN). However, its diagnostic value remains unclear. This meta-analysis was conducted to comprehensively evaluate the value of uTWEAK for diagnosis and evaluating activity in LN. METHODS: Medline, Web of Science, Chinese Biomedical Medical, and Chinese National Knowledge Infrastructure databases were searched to acquire eligible studies published before September 30, 2019. The quality of the studies was evaluated by Quality Assessment of Diagnostic Accuracy Studies-2. Summary receiver operating characteristic curve and area under the curve were applied to summarize the overall diagnostic performances. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated with the fixed-effects model. RevMan 5.3, Stata 12.0, and Meta-disc 1.4 software were used. RESULTS: A total of 7 studies were included. Of these, 4 studies were available for comparison between SLE with and without LN, and 3 studies were for active and inactive LN. The total area under the curve was 0.8640, and DOR was 14.89 (95% confidence interval [CI], 7.95-27.86). For LN diagnosis, the pooled sensitivity, specificity, and DOR were 0.55 (95% CI, 0.47-0.63), 0.92 (95% CI, 0.86-0.96), and 16.54 (95% CI, 7.57-36.15), respectively. For assessing LN activity, the pooled sensitivity, specificity, and DOR were 0.91 (95% CI, 0.82-0.96), 0.70 (95% CI, 0.58-0.81), and 18.45 (95% CI, 7.45-45.87), respectively. CONCLUSIONS: This meta-analysis indicated that uTWEAK has relatively moderate sensitivity and specificity for diagnosis and evaluating activity in LN, suggesting that uTWEAK can serve as a helpful biomarker for LN.
Assuntos
Nefrite Lúpica , Apoptose , Biomarcadores , Humanos , Nefrite Lúpica/diagnóstico , Curva ROC , Fator de Necrose Tumoral alfaRESUMO
The WD40 transcription factor family is a gene superfamily widely found in eukaryotes, which is closely related to plant growth and development regulation. It has been reported that the WD40 transcription factor was involved in the synthesis of anthocyanins, which is one of the vital components of safflower flavonoid compounds. In this study, 40 CtWD40 members in the safflower genome were identified though bioinformatics tools and gene expression analysis methods. According to the WD40 protein sequence and phylogenetic characteristics of Arabidopsis and other plants, the safflower CtWD40 family was classified into 7 subfamilies. Conservative motif analysis was used to reveal the specific conserved motifs and gene structures of each subfamily member, and there exist a certain degree of similarities in the conserved motifs and gene structure between the closely related family members. Subsequently, the search for cis-acting elements of gene promoters found CtWD40-specific promoter elements, revealing the metabolic pathways which may involve. Next, enrichment of function analysis was employed to analyze the functional categories and cellular localization of the CtWD40 protein. Furthermore, the interactions between CtWD40 proteins predicted its potential regulatory function. Finally, 19 members of the safflower CtWD40 subfamily were analyzed by qRT-PCR, the result showed the expression patterns of these members were different in diverse tissue and flowering period. This study provides a basis for the functional and expression research of the CtWD40 genes.
Assuntos
Carthamus tinctorius , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genéticaRESUMO
Diacylglycerol kinase (DGK) is an enzyme that plays a pivotal role in abiotic and biotic stress responses in plants by transforming the diacylglycerol into phosphatidic acid. However, there is no report on the characterization of soybean DGK genes in spite of the availability of the soybean genome sequence. In this study, we performed genome-wide analysis and expression profiling of the DGK gene family in the soybean genome. We identified 12 DGK genes (namely GmDGK1-12) which all contained conserved catalytic domains with protein lengths and molecular weights ranging from 436 to 727 amino acids (aa) and 48.62 to 80.93 kDa, respectively. Phylogenetic analyses grouped GmDGK genes into three clusters-cluster I, cluster II, and cluster III-which had three, four, and five genes, respectively. The qRT-PCR analysis revealed significant GmDGK gene expression levels in both leaves and roots coping with polyethylene glycol (PEG), salt, alkali, and salt/alkali treatments. This work provides the first characterization of the DGK gene family in soybean and suggests their importance in soybean response to abiotic stress. These results can serve as a guide for future studies on the understanding and functional characterization of this gene family.
Assuntos
Diacilglicerol Quinase/genética , Perfilação da Expressão Gênica , Genômica , Glycine max/enzimologia , Glycine max/genética , Família Multigênica , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Especificidade de Órgãos/genética , Filogenia , Regiões Promotoras Genéticas/genética , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismoRESUMO
To clone bHLH( basic helix-loop-helix) gene from Carthamus tinctorius,analyze the expression level in different plant tissues and construct the plant expression vector. The bHLH1 gene was cloned by RT-PCR techniques,and the protein characteristics were analyzed by bioinformatics,and phylogenetic tree was constructed. The expression of bHLH1 gene in different tissues and the roots after inoculated by Fusarium oxysporum were analyzed using real time-PCR,and the plant expression vector p BASTA-bHLH1 was constructed. The obtained ORF sequence of bHLH1 gene was 897 bp,encoded a protein of 298 amino acids. Sequence alignment and phylogenetic tree analyses showed that C. tinctorius bHLH1 had a certain homology with other species of amino acids,and was the most similar to the amino acid sequence of tobacco. Real-time PCR results showed significant differences,CtbHLH1 gene in red flower petals in different tissues and different flowering period had remarkable difference in expression level,its high amount expressed in petals,flowers third day after blossom expressed the highest quantity,at the end of the flowering the expression quantity is low. In addition,it is expressed in the root,and the expression in the stem and leaves is extremely low. The bHLH1 gene of C. tinctorius is successfully cloned,and the expression is analyzed. The plant expression vector p BASTA-bHLH is constructed.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carthamus tinctorius/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Clonagem Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , FilogeniaRESUMO
BACKGROUND Presently, studies of factors associated with drug-resistant tuberculosis (TB) focus on patients' socio-demographic characteristics and living habits, to the exclusion of biochemical indicators, especially immune factors. This study was carried out to determine whether immune factors are associated with drug-resistant TB. MATERIAL AND METHODS A total of 227 drug-resistant pulmonary TB patients and 225 drug-susceptible pulmonary TB patients were enrolled in this study. Information on socio-demographic characteristics and biochemical indicators were obtained through their clinical records. Non-conditional logistic regression was used to analyze the association of these indicators with drug-resistant TB. RESULTS There were significant differences in re-treatment, marital status, alanine aminotransferase (ALT), blood uric acid (BUA), carcino-embryonic antigen (CEA), T-spot, and CD3 and CD4 counts between the 2 groups. In multivariable analysis, re-treatment [Odds Ratio (OR)=5.290, 95% Confidence Interval [CI]=2.652-10.551); CD3 (OR=1.034, 95% CI=1.001-1.068); CD4 (OR=1.035, 95% CI =1.001-1.070) and IgM (OR=1.845, 95% CI=1.153-2.952) were associated with drug-resistant TB. CONCLUSIONS These results suggest the need for greater attention to re-treatment cases and immune function when treating drug-resistant TB.
Assuntos
Fatores Imunológicos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Adulto , Idoso , Antituberculosos/uso terapêutico , Biomarcadores Farmacológicos/sangue , Complexo CD3/sangue , Complexo CD3/imunologia , Antígenos CD4/sangue , Antígenos CD4/imunologia , Estudos de Casos e Controles , China , Feminino , Humanos , Imunidade Celular/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Fatores Imunológicos/sangue , Fatores Imunológicos/fisiologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , Tuberculose Resistente a Múltiplos Medicamentos/metabolismoRESUMO
Dehydration-responsive element binding (DREB) transcription factors (TFs) play important roles in the regulation of plant resistance to environmental stresses and can specifically bind to dehydration-responsive element/C-repeat element (DRE/CRT) proteins (G/ACCGAC) and activate expression of many stress-inducible genes. Here, we cloned and characterized a novel gene (AaDREB1) encoding the DREB1 transcription factor from the cold-tolerant plant Adonis amurensis. Quantitative real-time (qRT)-PCR results indicated that AaDREB1 expression was induced by salt, drought, cold stress, and abscisic acid application. A yeast one-hybrid assay demonstrated that AaDREB1 encodes a transcription activator and specifically binds to DRE/CRT. Furthermore, transgenic Arabidopsis and rice harboring AaDREB1 showed enhanced tolerance to salt, drought, and low temperature. These results indicated that AaDREB1 might be useful in genetic engineering to improve plant stress tolerance.
Assuntos
Adonis/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Adonis/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Temperatura Baixa , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Secas , Dados de Sequência Molecular , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/classificação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plasmídeos/genética , Plasmídeos/metabolismo , Sais/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-HíbridoRESUMO
Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.
Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Receptores Acoplados a Proteínas G , Ácido Taurocólico , Animais , Masculino , Ratos , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genéticaRESUMO
BACKGROUND: Soybean (Glycine max L.) is one of the most important oil crops in the world. It is desirable to increase oil yields from soybean, and so this has been a major goal of oilseed engineering. However, it is still uncertain how many genes and which genes are involved in lipid biosynthesis. RESULTS: Here, we evaluated changes in gene expression over the course of seed development using Illumina (formerly Solexa) RNA-sequencing. Tissues at 15 days after flowering (DAF) served as the control, and a total of 11592, 16594, and 16255 differentially expressed unigenes were identified at 35, 55, and 65 DAF, respectively. Gene Ontology analyses detected 113 co-expressed unigenes associated with lipid biosynthesis. Of these, 15 showed significant changes in expression levels (log2fold values ≥ 1) during seed development. Pathway analysis revealed 24 co-expressed transcripts involved in lipid biosynthesis and fatty acid biosynthesis pathways. We selected 12 differentially expressed genes and analyzed their expressions using qRT-PCR. The results were consistent with those obtained from Solexa sequencing. CONCLUSION: These results provide a comprehensive molecular biology background for research on soybean seed development, particularly with respect to the process of oil accumulation. All of the genes identified in our research have significance for breeding soybeans with increased oil contents.
Assuntos
Mineração de Dados , Perfilação da Expressão Gênica , Glycine max/metabolismo , Lipídeos/biossíntese , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Metabolismo dos Lipídeos , Lipídeos/genética , Anotação de Sequência Molecular , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo , Óleo de Soja/genética , Óleo de Soja/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Fatores de TempoRESUMO
BACKGROUND: Colonoscopy has become a routine physical examination as people's health awareness has increased. Polyethylene glycol (PEG) is greatly used in bowel preparation before colonoscopy due to its price and safety advantages. Septic shock after colonoscopy with PEG preparation is extremely rare, with only very few cases in critically ill patients. Herein, we describe a case of septic shock in a healthy young adult immediately following colonoscopy with PEG preparation. CASE SUMMARY: A 33-year-old young adult presented to our hospital for colonoscopy with PEG bowel preparation due to recurrent diarrhea for 7 years. The male's previous physical examination showed no abnormal indicators, and colonoscopy results were normal; however, he exhibited septic shock and markedly elevated white blood cell, C-reactive protein, and procalcitonin levels on the second day after colonoscopy. Immediate resuscitation and intensive care with appropriate antibiotics improved his condition. However, the blood and stool cultures did not detect the pathogen. CONCLUSION: Septic shock after colonoscopy is rare, especially in young adults. The authors considered the possibility of opportunistic infections after PEG bowel preparation, and clinicians should monitor patients for the possibility of such complications.
RESUMO
This paper has aimed to review the available evidence on the association between Interleukin (IL) -10 -1082G/A, -592C/A gene polymorphisms and the risk of human immunodeficiency virus-1(HIV-1) infection. The data of PubMed updated in May 2021 were retrieved. The HIV infection risks were estimated in allelic, recessive, dominant, homozygous, heterozygous, over-dominant models of IL-10-1082G/A and-592C/A gene locus as odds ratio (OR) with the corresponding 95% confidence interval (95% CI). The correlation was not significant between -1082G/A polymorphism and HIV-1 susceptibility (allelic model (G vs. A: OR (95% CI)=0.968 (0.878-1.067)); recessive model (GG vs. AA+AG: OR (95% CI)=0.940, (0.771-1.146)); dominant model (GG+AG vs. AA: OR (95% CI)=0.967(0.846-1.106)); homozygous model (GG vs. AA: OR (95% CI)=0.971(0.780-1.209)); heterozygous model (AG vs. AA: OR (95% CI)=0.988(0.797-1.224)) and over-dominant model (GG+AA vs. AG: OR (95% CI)=0.969(0.781-1.201)). IL-10-592C/A polymorphism might be related to HIV-1 in allelic model, dominant model, homozygous model and heterozygous model (OR (95% CI)(0.796-0.965); OR (95% CI)=0.793(0.664-0.948); OR (95% CI)=0.755,(0.612-0.930); OR (95% CI)=0.820(0.679-0.991), respectively), but not to recessive model and over-dominant model (OR (95% CI)=0.882(0.770-1.010) and OR (95% CI)=1.009(0.897-1.148)).
Assuntos
Infecções por HIV , Interleucina-10 , Predisposição Genética para Doença , HIV , Infecções por HIV/genética , Humanos , Interleucina-10/genética , Polimorfismo de Nucleotídeo Único , Fatores de RiscoRESUMO
The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.
RESUMO
Gut microbiota is well-established to regulate host blood pressure. Diosgenin is a natural steroid sapogenin with documented anti-inflammatory, antioxidant and antihypertensive properties. We aimed to investigate whether the antihypertensive effects of diosgenin are mediated by the microbiota-gut-brain axis in spontaneously hypertensive rats (SHR). 15-Week-old male Wistar Kyoto rats (WKY) and age-matched SHR were randomly distributed into three groups: WKY, SHR treated with a vehicle, and SHR treated with diosgenin (100 mg kg-1). Our results showed that diosgenin prevented elevated systolic blood pressure (SBP) and ameliorated cardiac hypertrophy in SHR. Moreover, the gut microbiota composition and intestinal integrity were improved. Furthermore, increased butyrate-producing bacteria and plasma butyrate and decreased plasma lipopolysaccharides were observed in SHR treated with diosgenin. These findings were associated with reduced microglial activation and neuroinflammation in the paraventricular nucleus. Our findings suggest that diosgenin attenuates hypertension by reshaping the gut microbiota and improving the gut-brain axis.
Assuntos
Diosgenina , Hipertensão , Sapogeninas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Antioxidantes/farmacologia , Pressão Sanguínea , Encéfalo , Butiratos , Diosgenina/farmacologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sapogeninas/farmacologiaRESUMO
Salt, saline-alkali conditions, and drought are major environmental factors limiting plant growth and productivity. The vacuolar H(+)-translocating inorganic pyrophosphatase (V-H(+)-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells. Expression of V-H(+)-PPase increases in plants under a number of abiotic stresses, and is thought to have an important role in adaptation to abiotic stress. In this work, we report the isolation and characterization of the gene, ScVP, encoding a vacuolar inorganic pyrophosphatase (V-H(+)-PPase) from the halophyte, Suaeda corniculata. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots, stems and leaves under treatment with salt, saline-alkali and drought. Compared with wild-type (WT) Arabidopsis, transgenic plants overexpressing ScVP accumulated more Na(+) in leaves and roots, and showed increased tolerance to high salinity, saline-alkali and drought stresses. The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses. The root length of transgenic plants under salt stress was longer than that of WT plants. Furthermore, the rate of water loss during drought stress was higher in WT than in transgenic plants. Collectively, these results indicate that ScVP plays an important role in plant tolerance to salt, saline-alkali and drought stress.
Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Álcalis/farmacologia , Arabidopsis/fisiologia , Chenopodiaceae/genética , Secas , Pirofosfatase Inorgânica/genética , Cloreto de Sódio/farmacologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Chenopodiaceae/efeitos dos fármacos , Chenopodiaceae/enzimologia , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Plântula/efeitos dos fármacos , Plântula/genética , Análise de Sequência de Proteína , Sódio/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/enzimologia , Água/metabolismoRESUMO
With the development of micromachining technologies, a wider use of microchannel heat sink (MCHS) is achieved in many fields, especially for cooling electronic chips. A microchannel with a width of 500 µm and a height of 500 µm is investigated through the numerical simulation method. Pin fins are arranged at an inclined angle of 0°, 30°, 45°, and 60°, when arrangement method includes in-lined pattern and staggered pattern. The effects of inclined angle and arrangement method on flow field and temperature field of MCHSs are studied when Reynolds number ranges from 10 to 300. In addition to this, quantitative analyses of hydraulic and thermal performance are also discussed in this work. With the increase of inclined angle, the variation of friction factor and Nusselt number do not follow certain rules. The best thermal performance is achieved in MCHS with in-lined fines at an inclined angle of 30° accompanied with the largest friction factor. Arrangement method of pin fins plays a less significant role compared with inclined angle from a general view, particularly in the Reynolds number range of 100~300.
RESUMO
MicroRNAs, a type of small non-coding RNA specialized in regulation of gene expression, extensively participate in biological development, cell differentiation, apoptosis, and other cellular processes. MiRNAs evolved independently in different strains and generally conserved in the process of evolution. This review summarized the origin, regulation of methylation, and evolutionary conservation of miRNAs. In addition, application of miRNAs in diseases, animals and plants was discussed.
Assuntos
Diferenciação Celular/genética , Evolução Molecular , MicroRNAs/genética , Animais , MicroRNAs/fisiologia , Plantas , RNA/genética , RNA/fisiologiaRESUMO
Temporal lobe epilepsy (TLE) is a severe chronic neurological disease caused by abnormal discharge of neurons in the brain and seriously affect the long-term life quality of patients. Currently, new insights into the pathogenesis of TLE are urgently needed to provide more personalized and effective therapeutic strategies. Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1PR2) signaling pathway plays a pivotal role in central nervous system (CNS) diseases. However, the precise altered expression of SphK1 and S1PR2 in TLE is remaining obscure. Here, we have confirmed the expression of SphK1 and S1PR2 in the pilocarpine-induced epileptic rat hippocampus and report for the first time the expression of SphK1 and S1PR2 in the temporal cortex of TLE patients. We found an increased expression of SphK1 in the brain from both epileptic rats and TLE patients. Conversely, S1PR2 expression level was markedly decreased. We further investigated the localization of SphK1 and S1PR2 in epileptic brains. Our study showed that both SphK1 and S1PR2 co-localized with activated astrocytes and neurons. Surprisingly, we observed different subcellular localization of SphK1 and S1PR2 in epileptic brain specimens. Taken together, our study suggests that the alteration of the SphK1/S1PR2 signaling axis is closely associated with the course of TLE and provides a new target for the treatment of TLE.