Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 1): 128326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000571

RESUMO

Recent reports had shown that microplastics could be transferred to organisms through various channels, severely and adversely affecting organisms' health and their physiological functions. Therefore, there remained an urgency to adopt an effective and environmentally friendly method to extract microplastics from water. In this paper, a cationic-modified d-DCPG aerogel with a three-dimensional network structure was successfully prepared by a directional freeze-drying technology in which double-aldehyde-modified cellulose nanofiber (CNF) was used as the matrix, betaine chloride hydrazide (GT) provided modification, and polyvinyl alcohol (PVA) provided cross-linking function. Aerogels had an excellent adsorption capacity (145.05 mg/g) for microplastics in aqueous environment, and when the pH was from 10 to 4, it exhibited an excellent adsorption efficiency from 90.01 % to 97.61 %; an excellent adsorption efficiency after 8 cycles (>89 %); pseudo-second-order kinetics and Freundlich adsorption isotherm had a high fitting effects on the adsorption process and adsorption results, respectively. And ultraviolet analysis also verified the occurrence of adsorption behavior. These results showed that d-DCPG aerogels had an excellent application prospects in microplastics removal in river, lake, reservoir, and marine environments.


Assuntos
Microplásticos , Plásticos , Adsorção , Aldeídos , Betaína , Cátions
2.
Int J Biol Macromol ; 225: 79-89, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460246

RESUMO

Anisotropic hydrogels have attracted extensive attention because they are similar to natural hydrogel-like materials and exhibit superiority and new functions that isotropic hydrogels cannot. Here, we fabricated strong and tough carboxymethyl cellulose-based conductive hydrogels with oriented hierarchical structures through pre-stretching, solvent displacement induced phase separation, and subsequent ionic crosslinking immobilization. Solvent displacement made the pre-stretched carboxymethyl cellulose-based polymer network more dense and linear, while the toughness of the hydrogel was further improved under the effect of phase separation. Strong and tough hydrogels were prepared by combining pre-stretching and phase separation; the variation range (tensile strength of 2.24-6.19 MPa and toughness of 19.41-22.92 MJ/m3) can be adjusted by the stretching ratio. Compared with traditional carboxymethyl cellulose-based hydrogels, the tensile strength and toughness were increased by 49 times and 15 times, respectively. In addition, the hydrogels had good underwater stability, ion cross-linking made the hydrogels have good conductivity, and the directional stratification structure gave the hydrogels conductive anisotropy. These characteristics give hydrogel sensors broad application prospects in flexible wearable devices, anisotropic sensors, and intelligent underwater devices.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Anisotropia , Condutividade Elétrica , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA