RESUMO
Background: Duchenne muscular dystrophy (DMD) is a progressive, life-limiting, neuromuscular disorder. Clinicians play an important role in informing families about therapy options, including approved gene therapies and clinical trials of unapproved therapies. Objective: This study aimed to understand the perspectives of clinicians about gene therapy for DMD, which has not previously been studied. Methods: We conducted interviews with specialist clinicians treating patients with DMD in the United States (nâ=â8) and United Kingdom (nâ=â8). Interviews were completed in 2022, before any approved gene therapies, to gain insight into barriers and facilitators to implementing gene therapy and educational needs of clinicians. Results: Most respondents expressed cautious optimism about gene therapy. Responses varied regarding potential benefits with most expecting delayed progression and duration of benefit (1 year to lifelong). Concern about anticipated risks also varied; types of anticipated risks included immunological reactions, liver toxicity, and cardiac or renal dysfunction. Clinicians generally, but not uniformly, understood that gene therapy for DMD would not be curative. Most reported needing demonstrable clinical benefit to justify treatment-related risks. Conclusions: Our data demonstrate variability in knowledge and attitudes about gene therapy among clinicians who follow patients with DMD. As our knowledge base about DMD gene therapy grows, clinician education is vital to ensuring that accurate information is communicated to patients and families.
Assuntos
Terapia Genética , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Humanos , Terapia Genética/métodos , Atitude do Pessoal de Saúde , Estados Unidos , Reino Unido , Masculino , FemininoRESUMO
Accelerated approval based on a likely surrogate endpoint can be life-changing for patients suffering from a rare progressive disease with unmet medical need, as it substantially hastens access to potentially lifesaving therapies. In one such example, antisense morpholinos were approved to treat Duchenne muscular dystrophy (DMD) based on measurement of shortened dystrophin in skeletal muscle biopsies as a surrogate biomarker. New, promising therapeutics for DMD include AAV gene therapy to restore another form of dystrophin termed mini- or microdystrophin. AAV-microdystrophins are currently in clinical trials but have yet to be accepted by regulatory agencies as reasonably likely surrogate endpoints. To evaluate microdystrophin expression as a reasonably likely surrogate endpoint for DMD, this review highlights dystrophin biology in the context of functional and clinical benefit to support the argument that microdystrophin proteins have a high probability of providing clinical benefit based on their rational design. Unlike exon-skipping based strategies, the approach of rational design allows for functional capabilities (i.e. quality) of the protein to be maximized with every patient receiving the same optimized microdystrophin. Therefore, the presence of rationally designed microdystrophin in a muscle biopsy is likely to predict clinical benefit and is consequently a strong candidate for a surrogate endpoint analysis to support accelerated approval.