Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Contam Hydrol ; 248: 104007, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405439

RESUMO

Long-term estimates of natural source zone depletion (NSZD) rates for petroleum LNAPL (light non-aqueous phase liquid) sites are not available. One-off measurements are often thought valid over the lifetime of LNAPL sites. In the context of site-wide LNAPL mass estimates, we report site-specific gasoline and diesel NSZD rates spanning 21-26 years. Using depth profiles of soil gases (oxygen, carbon dioxide, methane, volatiles) above LNAPL, NSZD rates were estimated in 1994, 2006 and 2020 for diesel and 1999, 2009 and 2020 for gasoline. Each date also had soil-core mass estimates, which together with NSZD rates allow estimation of the longevity for LNAPL presence. Site-wide coring (in 1992, 2002, 2007) estimated LNAPL mass reductions of 12,000 t. For diesel NSZD, the ratio of NSZD rates for 2006 (16,000-49,000 L/ha/y) to those in 2020 (2600-14,000 L/ha/y) was ~3-6. By 2020, the 1994 diesel NSZD rates would have predicted the entire removal of measured mass (16-42 kg/m2). For gasoline, NSZD rates in 1999 were extremely high (50,000-270,000 L/ha/y) but 9-27 times lower (5800-10,000 L/ha/y) a decade later. The gasoline NSZD rates in 1999 predicted near complete mass removal in 2-12 years, but 10-11 kg/m2 was measured 10 and 21 years later which is 26% of the initial mass in 1999. The outcomes substantiate the need to understand NSZD rate changes over the lifetime of LNAPL-impacted sites.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Dióxido de Carbono/análise , Gasolina , Solo , Poluentes do Solo/análise
2.
Water Res ; 70: 184-95, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25528548

RESUMO

The fate of benzotriazole (BTri) and 5-methylbenzotriazole (5-MeBT) was investigated under anaerobic conditions at nano gram per litre concentrations in large-scale laboratory columns to mimic a managed aquifer recharge replenishment strategy in Western Australia. Investigations of BTri and 5-MeBT sorption behaviour demonstrated mobility of the compounds with retardation coefficients of 2.0 and 2.2, respectively. Degradation processes over a period of 220 days indicated first order biodegradation of the BTri and 5-MeBT under anaerobic aquifer conditions after a biological lag-time of approximately 30-60 days. Biodegradation half-lives of 29 ± 2 and 26 ± 1 days for BTri and 5-MeBT were respectively observed, with no threshold effect to biodegradation observed at the 200 ng L(-1). The detection of degradation products provided further evidence of BTri and 5-MeBT biodegradation. These results suggested that if BTri and 5-MeBT were present in recycled water recharged to the Leederville aquifer, biodegradation during aquifer passage is likely given sufficient aquifer residence times or travel distances between recycled water injection and groundwater extraction.


Assuntos
Água Subterrânea/química , Triazóis/química , Poluentes Químicos da Água/química , Anaerobiose , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA