Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 44(5): 1091-101, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192576

RESUMO

Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαß transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRß transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction.


Assuntos
Imunidade Adaptativa , Colesterol/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Regulação Alostérica , Antígenos/imunologia , Antígenos/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Modelos Imunológicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Transdução de Sinais
2.
Blood ; 140(10): 1167-1181, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853161

RESUMO

Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Animais , Apoptose , Humanos , Leucemia Mieloide Aguda/genética , Complexo Principal de Histocompatibilidade , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transplante Homólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
3.
Immunity ; 35(2): 151-3, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21867922

RESUMO

In the current issue of Immunity, Martínez-Martín et al. (2011) describe the central supramolecular activation cluster (cSMAC) as a site of clathrin-independent T cell receptor (TCR) internalization and trogocytosis. Further, they identify small Rho GTPases TC21 and RhoG as key mediators of these processes.

4.
Int Immunol ; 22(3): 205-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20145007

RESUMO

Antigen binding to the B-cell antigen receptor (BCR) leads to receptor triggering and B-lymphocyte activation. Here, we have probed the molecular requirements for BCR triggering in primary murine B cells using a set of defined soluble haptenated peptides. Bi- and trivalent haptens activated the BCR, as measured by protein phosphorylation, Ca(2+) influx, BCR down-modulation and CD69, CD86 and MHC class II up-regulation. In contrast, four distinct monovalent haptens were ineffective. Next, we used two different anti-idiotypic antibodies, which bind to the antigen-combining site of the BCR. Again, monovalent Fab fragments were ineffective, whereas bivalent antibodies could stimulate the BCR. These findings are compatible with ligand-induced clustering of monomeric BCRs or re-organization of BCR complexes within pre-formed BCR oligomers. Lastly, an increase in the valency of the haptenated peptides improved the activation potential, whereas variations in the distance between two haptens had no effect. This finding contributes to understand how the immune system can efficiently recognize structurally diverse antigens but still discriminate between foreign and self.


Assuntos
Antígenos/química , Antígenos/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Anticorpos Anti-Idiotípicos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Western Blotting , Técnicas de Introdução de Genes , Haptenos/química , Haptenos/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/metabolismo
5.
Curr Pharm Des ; 15(28): 3237-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19860673

RESUMO

Vaccination techniques have developed rapidly over the last several decades from the immunization with live attenuated pathogens to the use of peptide and DNA subunit vaccines, from the use of classical adjuvants to cell-directed delivery. Vaccination techiques are also under investigation for the treatment of tumors and autoimmune diseases. However, profound knowledge of activation mechanisms of the immune cells on a molecular level is prerequisite for a better understanding of the immune response, and for the development of effective immunomodulatory tools. In this review we discuss the models of BCR and TCR activation, and using the example of some vacciantion technologies, we show, how the understanding of these models could help in the design of a new generation of vaccines.


Assuntos
Receptores de Antígenos/química , Receptores de Antígenos/imunologia , Vacinas/química , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA