Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 99: 103801, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119095

RESUMO

The FDA Produce Safety Rule states that water used for irrigation purposes, likely to come into contact with the edible portion of fruit and vegetables, must not exceed a defined limit of Escherichia coli populations. Although aquaponics has not been included in this guideline, it is worth investigating to establish a baseline for facilities to reference in produce production. Two microbial assays were performed, one a decoupled media-based aquaponics system over one year and another on a decoupled nutrient film technique (NFT) aquaponics system over 16 days. Water was sampled from each system over time to analyze changes of E. coli and coliforms. The geometric mean (GM) and statistical threshold variable (STV) were calculated based on E. coli populations from the irrigation source in each system. From the first experiment, it was determined, based on the FDA Produce Safety Rule, that E. coli must be monitored more closely from June to January as they were above the advised limit. The second experiment determined that E. coli and coliforms in the water significantly decreased over 16 days. Water should be held for 8 d and up to 16 d to reduce the likelihood of foodborne pathogens to contaminate produce.


Assuntos
Escherichia coli/isolamento & purificação , Água Doce/microbiologia , Hidroponia/instrumentação , Irrigação Agrícola , Contagem de Colônia Microbiana , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Inocuidade dos Alimentos , Verduras/crescimento & desenvolvimento
2.
J Food Prot ; 87(3): 100230, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278488

RESUMO

Aquaponic production of fresh produce is a sustainable agricultural method becoming widely adopted, though few studies have investigated potential food safety hazards within commercial systems. A longitudinal study was conducted to isolate and quantify several foodborne pathogens from a commercial, aquaponic farm, and to elucidate their distribution throughout. The survey was conducted over 2 years on a controlled-environment farm containing Nile tilapia (Oreochromis niloticus) and lettuce (Lactuca sativa). Samples (N = 1,047) were collected bimonthly from three identical, independent systems, and included lettuce leaves, roots, fingerlings (7-126 d old), feces from mature fish (>126 d old), water, and sponge swabs collected from the tank interior surface. Most probable number of generic Escherichia coli were determined using IDEXX Colilert Quanti-Tray. Enumeration and enrichment were used to detect Shiga toxin-producing E. coli (STEC), Salmonella enterica, Listeria monocytogenes, Aeromonas spp., Aeromonas hydrophilia, and Pseudomonas aeruginosa. Generic E. coli, STEC, L. monocytogenes, and S. enterica were not detected in collected samples. P. aeruginosa was isolated from water (7/351; 1.99%), swabs (3/351; 0.85%), feces (2/108; 1.85%), and lettuce leaves (2/99; 2.02%). A. hydrophila was isolated from all sample types (623/1047; 59.50%). The incidence of A. hydrophila in water (X2 = 23.234, p < 0.001) and sponge samples (X2 = 21.352, p < 0.001) increased over time.


Assuntos
Aeromonas hydrophila , Escherichia coli , Animais , Estudos Longitudinais , Agricultura/métodos , Água
3.
Int J Food Microbiol ; 404: 110316, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37499272

RESUMO

Aeromonas hydrophila is a zoonotic pathogen causing illness in fish and susceptible humans. This emerging pathogen has been isolated within aquaponic systems and could cause disease in fish and a hazard to humans consuming aquaponic produce. This study determined whether A. hydrophila from an aquaponic farm could form biofilms in aquaponic water and on materials used in these systems. A. hydrophila biofilm biomass and cell density in aquaponic water were evaluated by crystal violet staining and culture-based enumeration. Biofilm biomass and biofilm cell density were affected by the water source and A. hydrophila isolate (P < 0.05). A. hydrophila formed the most biomass from the beginning of deep-water culture (BDWC) water (OD570 0.202 ± 0.066) and the least from the end of deep-water culture (EDWC) water (OD570 0.140 ± 0.036; P < 0.05). Enumerated A. hydrophila from the biofilm varied among water sources; the fish tank water supported the greatest cell density (7.04 ± 0.71 log CFU/mL) while the EDWC supported the lowest cell density (6.76 ± 0.83 log CFU/mL). Biofilm formation was also evaluated on aquaponic materials such as nylon, polyvinyl chloride, polyethylene liner, bead filter, and foam. Biofilm formation on the liner had the greatest population (2.39 ± 0.022 log CFU/cm2), and the bead had the least (0.64 ± 0.039 log CFU/cm2; P < 0.05). Pathogenic organisms, such as A. hydrophila, may pose a greater risk to produce harvested from the BDWC and MDWC due to greater biofilm formation.


Assuntos
Aeromonas hydrophila , Doenças dos Peixes , Humanos , Animais , Água , Biofilmes , Peixes , Aquicultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA