Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 8(1): e1000283, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20098723

RESUMO

The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking.


Assuntos
Dendritos/metabolismo , Endossomos/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Células COS , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Chlorocebus aethiops , Dendritos/ultraestrutura , Escherichia coli/genética , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiologia , Camundongos , Plasticidade Neuronal , Proteínas Qa-SNARE/metabolismo , Ratos , Receptores de Glutamato/metabolismo , Suínos , Proteínas rab4 de Ligação ao GTP/análise , Proteínas rab4 de Ligação ao GTP/fisiologia
2.
Nat Genet ; 32(1): 116-27, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12195424

RESUMO

Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115-specific functions, underlie neurological alterations in Williams syndrome.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Síndrome de Williams/genética , Animais , Encéfalo/anormalidades , Complexo Dinactina , Dineínas/metabolismo , Marcação de Genes , Heterozigoto , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/deficiência , Fenótipo , Síndrome de Williams/fisiopatologia
3.
J Neurosci ; 31(12): 4555-68, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21430156

RESUMO

Dendritic arbors are compartments of neurons dedicated to receiving synaptic inputs. Their shape is an outcome of both the intrinsic genetic program and environmental signals. The microtubules and actin cytoskeleton are both crucial for proper dendritic morphology, but how they interact is unclear. The present study demonstrates that microtubule plus-end tracking protein CLIP-170 and actin-binding protein IQGAP1 regulate dendrite morphology of rat neurons by coordinating the interaction between microtubules and the actin cytoskeleton. Moreover, we show that mTOR kinase interacts with CLIP-170 and is needed for efficient formation of a protein complex containing CLIP-170 and IQGAP1. Dynamic microtubules, CLIP-170, and IQGAP1 are required for proper dendritic arbor morphology and PI3K-mTOR-induced increase in dendritic arbor complexity. Moreover, CLIP-170 and IQGAP1 knockdown modulates dendritic arbor growth via regulation of the actin cytoskeleton. We postulate that mTOR controls dendritic arbor morphology by enhancing cross talk between dynamic microtubules and actin through CLIP-170 and IQGAP1.


Assuntos
Dendritos/ultraestrutura , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Ativadoras de ras GTPase/fisiologia , Actinas/metabolismo , Animais , Biotinilação , Células Cultivadas , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , DNA/genética , Dendritos/fisiologia , Imunofluorescência , Proteínas de Fluorescência Verde , Hipocampo/citologia , Hipocampo/fisiologia , Processamento de Imagem Assistida por Computador , Indicadores e Reagentes , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Ratos , Serina-Treonina Quinases TOR/metabolismo , Transfecção , Proteínas Ativadoras de ras GTPase/genética
4.
J Neurosci ; 23(7): 2655-64, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12684451

RESUMO

Several microtubule binding proteins, including CLIP-170 (cytoplasmic linker protein-170), CLIP-115, and EB1 (end-binding protein 1), have been shown to associate specifically with the ends of growing microtubules in non-neuronal cells, thereby regulating microtubule dynamics and the binding of microtubules to protein complexes, organelles, and membranes. When fused to GFP (green fluorescent protein), these proteins, which collectively are called +TIPs (plus end tracking proteins), also serve as powerful markers for visualizing microtubule growth events. Here we demonstrate that endogenous +TIPs are present at distal ends of microtubules in fixed neurons. Using EB3-GFP as a marker of microtubule growth in live cells, we subsequently analyze microtubule dynamics in neurons. Our results indicate that microtubules grow slower in neurons than in glia and COS-1 cells. The average speed and length of EB3-GFP movements are comparable in cell bodies, dendrites, axons, and growth cones. In the proximal region of differentiated dendrites approximately 65% of EB3-GFP movements are directed toward the distal end, whereas 35% are directed toward the cell body. In more distal dendritic regions and in axons most EB3-GFP dots move toward the growth cone. This difference in directionality of EB3-GFP movements in dendrites and axons reflects the highly specific microtubule organization in neurons. Together, these results suggest that local microtubule polymerization contributes to the formation of the microtubule network in all neuronal compartments. We propose that similar mechanisms underlie the specific association of CLIPs and EB1-related proteins with the ends of growing microtubules in non-neuronal and neuronal cells.


Assuntos
Proteínas do Citoesqueleto/análise , Proteínas Luminescentes/análise , Proteínas Associadas aos Microtúbulos , Microtúbulos/ultraestrutura , Neurônios/ultraestrutura , Animais , Biomarcadores/análise , Células COS , Diferenciação Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dendritos/química , Dendritos/ultraestrutura , Proteínas de Fluorescência Verde , Hipocampo/citologia , Proteínas Luminescentes/genética , Camundongos , Microscopia Confocal , Movimento , Neurônios/química , Neurônios/metabolismo , Células de Purkinje/química , Células de Purkinje/ultraestrutura , Proteínas Recombinantes de Fusão/análise , Transfecção
5.
Neuron ; 61(1): 85-100, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19146815

RESUMO

Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morphology. We describe p140Cap/SNIP, a regulator of Src tyrosine kinase, as an EB3 interacting partner that is predominantly localized to spines and enriched in the postsynaptic density. Inhibition of microtubule dynamics, or knockdown of either EB3 or p140Cap, modulates spine shape via regulation of the actin cytoskeleton. Fluorescence recovery after photobleaching revealed that EB3-binding is required for p140Cap accumulation within spines. In addition, we found that p140Cap interacts with Src substrate and F-actin-binding protein cortactin. We propose that EB3-labeled growing microtubule ends regulate the localization of p140Cap, control cortactin function, and modulate actin dynamics within dendritic spines, thus linking dynamic microtubules to spine changes and synaptic plasticity.


Assuntos
Espinhas Dendríticas/ultraestrutura , Microtúbulos/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Cortactina/metabolismo , Citoesqueleto/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nocodazol/farmacologia , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sinapses/ultraestrutura , Moduladores de Tubulina/farmacologia
6.
Neuron ; 58(4): 599-612, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18498740

RESUMO

The level of electrotonic coupling in the inferior olive is extremely high, but its functional role in cerebellar motor control remains elusive. Here, we subjected mice that lack olivary coupling to paradigms that require learning-dependent timing. Cx36-deficient mice showed impaired timing of both locomotion and eye-blink responses that were conditioned to a tone. The latencies of their olivary spike activities in response to the unconditioned stimulus were significantly more variable than those in wild-types. Whole-cell recordings of olivary neurons in vivo showed that these differences in spike timing result at least in part from altered interactions with their subthreshold oscillations. These results, combined with analyses of olivary activities in computer simulations at both the cellular and systems level, suggest that electrotonic coupling among olivary neurons by gap junctions is essential for proper timing of their action potentials and thereby for learning-dependent timing in cerebellar motor control.


Assuntos
Cerebelo/fisiologia , Junções Comunicantes/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Núcleo Olivar/citologia , Estimulação Acústica/efeitos adversos , Potenciais de Ação/fisiologia , Animais , Piscadela/fisiologia , Simulação por Computador , Conexinas/deficiência , Locomoção/genética , Camundongos , Camundongos Knockout , Modelos Neurológicos , Técnicas de Patch-Clamp/métodos , Tempo de Reação/fisiologia , Fatores de Tempo , Proteína delta-2 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA