Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(31): 21932-21947, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39051942

RESUMO

The electronic organization of Frustrated Lewis Pairs (FLPs) allows them to activate strong bonds in mechanisms that are usually free of redox events at the Lewis acidic site. The unique 6d/5f manifold of uranium could serve as an interesting FLP acceptor site, but to date FLP-like catalysis with actinide ions is unknown. In this paper, the catalytic, FLP-like hydrogenation reactivity of trivalent uranium complexes is explored in the presence of base-stabilized silylenes. Comparison to isoelectronic, isostructural lanthanide and thorium complexes lends insight into the electronic factors governing dihydrogen activation. Mechanistic studies of the uranium- and lanthanide-catalyzed hydrogenations are presented, including discussion of likely intermediates. Computational modeling of the f-element complexes, combined with experimental comparison to p-block Lewis acids, elucidates the relevance of steric hindrance to productive reactivity with dihydrogen. Consideration of the complete experimental and theoretical evidence provides a clear picture of the electronic and steric factors governing dihydrogen activation by these FLPs.

2.
J Am Chem Soc ; 145(30): 16374-16382, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467432

RESUMO

Manifesting chemical differences in individual rare earth (RE) element complexes is challenging due to the similar sizes of the tripositive cations and the corelike 4f shell. We disclose a new strategy for differentiating between similarly sized Dy3+ and Y3+ ions through a tailored photochemical reaction of their isostructural complexes in which the f-electron states of Dy3+ act as an energy sink. Complexes RE(hfac)3(NMMO)2 (RE = Dy (2-Dy) and Y (2-Y), hfac = hexafluoroacetylacetonate, and NMMO = N-methylmorpholine-N-oxide) showed variable rates of oxygen atom transfer (OAT) to triphenylphosphine under ultraviolet (UV) irradiation, as monitored by 1H and 19F NMR spectroscopies. Ultrafast transient absorption spectroscopy (TAS) identified the excited state(s) responsible for the photochemical OAT reaction or lack thereof. Competing sensitization pathways leading to excited-state deactivation in 2-Dy through energy transfer to the 4f electron manifold ultimately slows the OAT reaction at this metal cation. The measured rate differences between the open-shell Dy3+ and closed-shell Y3+ complexes demonstrate that using established principles of 4f ion sensitization may deliver new, selective modalities for differentiating the RE elements that do not depend on cation size.

3.
Inorg Chem ; 62(40): 16343-16353, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37751598

RESUMO

Ligands that can discriminate between individual rare earth elements are important for production of these critical elements. A set of aryl-vinyl phosphonic acid ligands for extracting rare earth elements were designed and synthesized under the hypothesis that the strength of the rare earth-ligand interactions could be tuned by changing the dipole moment of the ligand. The ligands were synthesized via a two-step reaction procedure using a Heck coupling reaction to functionalize vinyl phosphonic acid, followed by Steglich esterification to obtain high-purity styryl phosphonic acid monoesters with varying dipole moments along the P-C bond. The metal binding strength and composition of the rare earth complexes formed with these styryl phosphonic acid monoesters were experimentally studied by liquid-liquid extraction techniques, while DFT calculations were performed to determine the dipole moments of the free and complexed ligands and the electronic structure of the complexes formed. All three prepared ligands were much stronger extracting agents for europium(III) than the dialkylphosphonic acids usually used for this separation. However, the order of increasing extraction strength was found to match the order of the decreasing calculated dipole moment along the P-C bond of the three styryl-based ligands, rather than correlating with increasing ligand basicity, as reflected by the pKa of the ligands. These findings suggest that this approach can be used to systematically alter the extraction strength of aromatic phosphonic monoesters for rare earth element purification.

4.
Angew Chem Int Ed Engl ; 61(20): e202201705, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35238149

RESUMO

Reaction of the 1,2-disilylene, [{ArC(NDip)2 }Si]2 1 (Dip=2,6-diisopropylphenyl, Ar=4-C6 H4 But ), with CO proceeds via insertion of CO into one Si-N bond, and Si-Si bond cleavage, to cleanly give the bis(silylene), {ArC(NDip)2 }Si(:)O C S i ( : ) ( N D i p )​ 2 C ‾ Ar 2, under ambient conditions. The reaction can be partially reversed when solutions of 2 are subjected to UV irradiation. The five-membered heterocyclic fragment of 2 represents the first silicon analogue of an "abnormal" N-heterocyclic carbene (aNHC), a view which is substantiated by a computational analysis of the compound. Reaction of 2 with [Mo(CO)6 ] under UV light affords the chelate complex, [Mo(CO)4 (κ2 -Si,Si-2)] 3, while reaction with [Fe(CO)5 ] gives the unusual silyleneyl bridged complex, [{Fe2 (CO)6 }{µ-Si[(NDip)2 CAr]}2 ] 4. The same coordination complexes can be accessed by reaction of 1 with [Mo(CO)6 ] or [Fe(CO)5 ] under UV light. As is the case for aNHCs, d-block metal complexes of bis(silylene) 2 could prove useful as bespoke catalysts for organic transformations.

5.
J Am Chem Soc ; 143(15): 5998-6005, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825481

RESUMO

Although a series of complexes with rare earth (RE) metal-metal bonds have been reported, complexes which have multiple RE-Rh bonds are unknown. Here we present the identification of the first example of a molecule containing multiple RE-Rh bonds. The complex with multiple Ce-Rh bonds was synthesized by the reduction of a d-f heterometallic molecular cluster Ce{N[(CH2CH2NPiPr2)RhCl(COD)]3} with excess potassium-graphite. The oxidation state of Ce in 3a appears to be a mixture of Ce(III) and Ce(IV), which was confirmed by X-ray photoelectron spectroscopy, magnetism, and theoretical investigations (DFT and CASSCF). For comparison, the analogous species with multiple La(III)-Rh and Nd(III)-Rh bonds were also constructed. This study provides a possible route for the construction of complexes with multiple RE metal-metal bonds and an investigation of their potential properties and applications.

6.
J Am Chem Soc ; 143(29): 11225-11234, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269064

RESUMO

Multimetallic cooperativity is believed to play a key role in the cleavage of dinitrogen to nitrides (N3-), but the mechanism remains ambiguous due to the lack of isolated intermediates. Herein, we report the reduction of the complex [K2{[UV(OSi(OtBu)3)3]2(µ-O)(µ-η2:η2-N2)}], B, with KC8, yielding the tetranuclear tetranitride cluster [K6{(OSi(OtBu)3)2UIV}3{(OSi(OtBu)3)2UVI}(µ4-N)3(µ3-N)(µ3-O)2], 1, a novel example of N2 cleavage to nitride by a diuranium complex. The structure of complex 1 is remarkable, as it contains a unique uranium center bound by four nitrides and provides the second example of a trans-N═UVI═N core analogue of UO22+. Experimental and computational studies indicate that the formation of the U(IV)/U(VI) tetrauranium cluster occurs via successive one-electron transfers from potassium to the bound N24- ligand in complex B, resulting in N2 cleavage and the formation of the putative diuranium(V) bis-nitride [K4{[UV(OSi(OtBu)3)3]2(µ-O)(µ-N)2}], X. Additionally, cooperative potassium binding to the U-bound N24- ligand facilitates dinitrogen cleavage during electron transfer. The nucleophilic nitrides in both complexes are easily functionalized by protons to yield ammonia in 93-97% yield and with excess 13CO to yield K13CN and KN13CO. The structures of two tetranuclear U(IV)/U(V) bis- and mononitride clusters isolated from the reaction with CO demonstrate that the nitride moieties are replaced by oxides without disrupting the tetranuclear structure, but ultimately leading to valence redistribution.

7.
J Am Chem Soc ; 143(47): 19748-19760, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787416

RESUMO

Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(µ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(µ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.


Assuntos
Complexos de Coordenação/química , Urânio/química , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Ligantes , Modelos Químicos , Oxirredução , Tório/química
8.
Chemistry ; 27(19): 5999-6006, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443293

RESUMO

The [2+1] cycloaddition reaction of a metal carbene with an alkene can produce important cyclopropane products for synthetic intermediates, materials, and pharmaceutical applications. However, this reaction is often accompanied by side reactions, such as coupling and self-coupling, so that the yield of the cyclopropanation product of non-silver transition-metal carbenes and hindered alkenes is generally lower than 50 %. To solve this problem, the addition of a low concentration of diazo compound (decomposition of sulfonyl hydrazones) to alkenes catalyzed by either CuOAc or PdCl2 was studied, but side reactions could still not be avoided. Interestingly, however, the yield of cyclopropanation products for such hindered alkenes were as high as 99 % with AgOTf as a catalyst. To explain this unexpected phenomenon, reaction pathways have been computed for four different catalysts by using DFT. By combining the results of these calculations with those obtained experimentally, it can be concluded that the efficiency of the silver catalyst is due to the barrierless concerted cycloaddition step and the kinetic inhibition of side reactions by a high concentration of alkene.

9.
Chemistry ; 27(52): 13144-13148, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34258796

RESUMO

A dimeric ß-diketiminato ytterbium(II) hydride affects both the two-electron aromatization of 1,3,5,7-cyclooctatetraene (COT) and the more challenging two-electron reduction of polyaromatic hydrocarbons, including naphthalene (E0 =-2.60 V). Confirmed by Density Functional Theory calculations, these reactions proceed via consecutive polarized Yb-H/C=C insertion and deprotonation steps to provide the respective ytterbium (II) inverse sandwich complexes and hydrogen gas. These observations highlight the ability of a simple ytterbium(II) hydride to act as a powerful two-electron reductant at room temperature without the necessity of an external electron to initiate the reaction and avoiding radicaloid intermediates.

10.
Angew Chem Int Ed Engl ; 60(13): 7087-7092, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33474826

RESUMO

The photochemical activation of dimagnesium(I) compounds, and subsequent high yielding, regioselective reactions with inert arenes are reported. Irradiating benzene solutions of [{(Ar Nacnac)Mg}2 ] (Ar Nacnac=[HC(MeCNAr)2 ]- ; Ar=2,6-diisopropylphenyl (Dip) or 2,4,6-tricyclohexylphenyl (TCHP)) with blue or UV light, leads to double reduction of benzene and formation of the "Birch-like" cyclohexadienediyl bridged compounds, [{(Ar Nacnac)Mg}2 (µ-C6 H6 )]. Irradiation of [{(Dip Nacnac)Mg}2 ] in toluene, and each of the three isomers of xylene, promoted completely regio- and chemo-selective C-H bond activations, and formation of [(Dip Nacnac)Mg(Ar')] (Ar'=meta-tolyl; 2,3-, 3,5- or 2,5-dimethylphenyl), and [{(Dip Nacnac)Mg(µ-H)}2 ]. Fluorobenzene was cleanly defluorinated by photoactivated [{(Dip Nacnac)Mg}2 ], leading to biphenyl and [{(Dip Nacnac)Mg(µ-F)}2 ]. Computational studies suggest all reactions proceed via photochemically generated magnesium(I) radicals, which reduce the arene substrate, before C-H or C-F bond activation processes occur.

11.
Angew Chem Int Ed Engl ; 60(2): 630-634, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969564

RESUMO

Reactions of two magnesium(I) compounds, [{(Ar Nacnac)Mg}2 ] (Ar Nacnac=[HC(MeCNAr)2 ]- ; Ar=mesityl (Mes) or o-xylyl (Xyl)), with CO in the presence of [Mo(CO)6 ] lead to the reductive hexamerization of CO, and formation of magnesium benzenehexolate complexes, [{(Ar Nacnac)Mg}6 (C6 O6 )]. [Mo(CO)6 ] is not consumed in these reactions, but is apparently required to initiate (or catalyze) the CO hexamerizations. A range of studies were used to probe the mechanism of formation of the benzenehexolate complexes. The magnesium(I) reductive hexamerizations of CO are closely related to Liebig's reduction of CO with molten potassium (to give K6 C6 O6 , amongst other products), originally reported in 1834. As the mechanism of that reaction is still unknown, it seems reasonable that magnesium(I) reductions of CO could prove useful homogeneous models for its elucidation, and for the study of other C-C bond forming reactions that use CO as a C1 feedstock (e.g. the Fischer-Tropsch process).

12.
Angew Chem Int Ed Engl ; 60(1): 473-479, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32930496

RESUMO

Activation of dinitrogen (N2 , 78 %) and dioxygen (O2 , 21 %) has fascinated chemists and biochemists for decades. The industrial conversion of N2 into ammonia requires extremely high temperatures and pressures. Herein we report the first example of N2 and O2 cleavage by a uranium complex, [N(CH2 CH2 NPi Pr2 )3 U]2 (TMEDA), under ambient conditions without an external reducing agent. The N2 triple bond breaking implies a UIII -PIII six-electron reduction. The hydrolysis of the N2 reduction product allows the formation of ammonia or nitrogen-containing organic compounds. The interaction between UIII and PIII in this molecule allows an eight-electron reduction of two O2 molecules. This study establishes that the combination of uranium and a low-valent nonmetal is a promising strategy to achieve a full N2 and O2 cleavage under ambient conditions, which may aid the design of new systems for small molecules activation.

13.
Angew Chem Int Ed Engl ; 60(7): 3737-3744, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33085160

RESUMO

Oxide is an attractive linker for building polymetallic complexes that provide molecular models for metal oxide activity, but studies of these systems are limited to metals in high oxidation states. Herein, we synthesized and characterized the molecular and electronic structure of diuranium bridged UIII /UIV and UIII /UIII complexes. Reactivity studies of these complexes revealed that the U-O bond is easily broken upon addition of N-heterocycles resulting in the delivery of a formal equivalent of UIII and UII , respectively, along with the uranium(IV) terminal-oxo coproduct. In particular, the UIII /UIII oxide complex effects the reductive coupling of pyridine and two-electron reduction of 4,4'-bipyridine affording unique examples of diuranium(III) complexes bridged by N-heterocyclic redox-active ligands. These results provide insight into the chemistry of low oxidation state metal oxides and demonstrate the use of oxo-bridged UIII /UIII complexes as a strategy to explore UII reactivity.

14.
J Am Chem Soc ; 142(35): 15004-15011, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786768

RESUMO

Reduction of dinitrogen (N2) is a major challenge for chemists. Cooperation of multiple metal centers to break the strong N2 triple bond has been identified as a crucial step in both the industrial and the natural ammonia syntheses. However, reports of the cleavage of N2 by a multimetallic uranium complex remain extremely rare, although uranium species were used as catalyst in the early Harber-Bosch process. Here we report the cleavage of N2 to two nitrides by a multimetallic uranium-rhodium cluster at ambient temperature and pressure. The nitride product further reacts with acid to give substantial yields of ammonium. The presence of uranium-rhodium bond in this multimetallic cluster was revealed by X-ray crystallographic and computational studies. This study demonstrates that the multimetallic clusters containing uranium and transition metals are promising materials for N2 fixation and reduction.

15.
J Am Chem Soc ; 142(12): 5538-5542, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32134644

RESUMO

Out of the 14 lanthanide (Ln) ions, molecular complexes of Ln(IV) were known only for cerium and more recently terbium. Here we demonstrate that the +IV oxidation state is also accessible for the large praseodymium (Pr) cation. The oxidation of the tetrakis(triphenysiloxide) Pr(III) ate complex, [KPr(OSiPh3)4(THF)3], 1-PrPh, with [N(C6H4Br)3][SbCl6], affords the Pr(IV) complex [Pr(OSiPh3)4(MeCN)2], 2-PrPh, which is stable once isolated. The solid state structure, UV-visible spectroscopy, magnetometry, and cyclic voltammetry data along with the DFT computations of the 2-PrPh complex unambiguously confirm the presence of Pr(IV).

16.
Chemistry ; 26(60): 13573-13577, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32761976

RESUMO

The reaction of uranacyclopropene complex (C5 Me5 )2 U[η2 -1,2-C2 (SiMe3 )2 ] with B-aryl bis(alkynyl)borane PhB(C≡CPh)2 led to the first six-membered uranium metallaboracycle, while the reaction with B-amino bis(alkynyl)borane (Me3 Si)2 NB(C≡CPh)2 afforded an unexpected uranaborabicyclo[2.2.0] complex via [2+2] cycloaddition. The reaction with CuCl revealed the non-innocent property of the rearranged bis(alkynyl)boron species towards oxidant. The reactions with isocyanide DippNC: (Dipp=2,6-iPr2 -C6 H3 ) and isocyanate tBuNCO afforded the novel uranaborabicyclo[3.2.0] complexes. All new complexes have been structurally characterized. DFT calculations were performed to provide more insights into the electronic structures and the reaction mechanism.

17.
Chemistry ; 26(64): 14665-14670, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32542741

RESUMO

Reactions of a series of magnesium(I) compounds with ethylene, in the presence of an N-heterocyclic carbene (NHC), have been explored. Treating [{(Mes Nacnac)Mg}2 ] (Mes Nacnac=[HC(MeCNMes)2 ]- , Mes=mesityl) with an excess of ethylene in the presence of two equivalents of :C{(MeNCMe)2 } (TMC) leads to the formal reductive coupling of ethylene, and formation of the 1,2-dimagnesiobutane complex, [{(Mes Nacnac)(TMC)Mg}2 (µ-C4 H8 )]. In contrast, when the reaction is repeated in the presence of three equivalents of TMC, a mixture of the ß-diketiminato magnesium ethyl, [(Mes Nacnac)(TMC)MgEt], and the NHC coordinated magnesium diamide, [(Mes Nacnac-H )Mg(TMC)2 ], results. Four related products, [(Ar Nacnac)(TMC)MgEt] (Ar=2,6-dimethylphenyl (Xyl) or 2,6-diisopropylphenyl (Dip)) and [(Ar Nacnac-H )Mg(TMC)2 ] (Ar=Xyl or Dip), were similarly synthesised and crystallographically characterized. Computational studies have been employed to investigate the mechanisms of the two observed reaction types, which appear dependent on the substitution pattern of the magnesium(I) compound, and the stoichiometric equivalents of TMC used in the reactions.

18.
Chemistry ; 26(13): 2821-2825, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31943432

RESUMO

Potassium silanide [KSiH3 ]∞ contains 4.2 wt % of hydrogen and has been intensely studied as hydrogen storage material. The macrocyclic ligand Me4 TACD (1,4,7,10-tetramethyl-1,4,7,10-tetraaminocyclododecane, L) stabilizes the full range of triphenylsilyl complexes [(L)MSiPh3 ]n (M=Li-Cs), which react with H2 or PhSiH3 to form molecular [(L)MSiH3 ]n that can be isolated in soluble form and fully characterized.

19.
Chemistry ; 26(11): 2360-2364, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31950554

RESUMO

While carbene complexes of uranium have been known for over a decade, there are no reported examples of complexes between an actinide and a "heavy carbene." Herein, we report the syntheses and structures of the first uranium-heavy tetrylene complexes: (CpSiMe3 )3 U-Si[PhC(NR)2 ]R' (R=tBu, R'=NMe2 1; R=iPr, R'=PhC(NiPr)2 2). Complex 1 features a kinetically robust uranium-silicon bonding interaction, while the uranium-silicon bond in 2 is easily disrupted thermally or by competing ligands in solution. Calculations reveal polarized σ bonds, but depending on the substituents at silicon a substantial π-bonding interaction is also present. The complexes possess relatively high bond orders which suggests primarily covalent bonding between uranium and silicon. These results comprise a new frontier in actinide-heavy main-group bonding.

20.
Angew Chem Int Ed Engl ; 59(12): 4947-4952, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-31885135

RESUMO

Preparation of polyethylenes containing hydroxy groups has been already industrialized through radical copolymerization under harsh conditions followed by alcoholysis. By contrast, hydroxy-functionalized polypropylene has proven a rather challenging goal in polymer science. Propylene can't be polymerized through a radical mechanism, and its coordination copolymerization with polar monomers is frustrated by catalyst poisoning. Herein, we report a new strategy to reach this target. The coordination polymerization of allenes by rare-earth-metal precursors affords pure 1,2-regulated polyallenes, which are facilely transformed into poly(allyl alcohol) analogues by subsequent hydroboration/oxidation. Strikingly, the copolymerization of allenes and propylene gives unprecedented hydroxy-functionalized polypropylene after post-polymerization modification. Mechanistic elucidation by DFT simulation suggests kinetic rather than thermodynamic control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA